RESUMEN
Las dermatofitosis corresponden a un grupo de enfermedades micóticas comunes en piel y fanéreas, donde Trichophyton rubrum es el agente causante más frecuente a nivel mundial y presente en nuestros 2 casos de pacientes masculinos con estas micosis, una en uñas y la otra en piel. Sin embargo, el enfoque de esta publicación se basa principalmente en la presencia de 2 interesantes contaminantes (uno en cada caso clínico) presentes solo en los cultivos de las primeras siembras como saprófitos y por ende como propágulos de dispersión, asociados al ambiente y sin intervención clínica demostrada en ambas micosis. La descripción morfofisiológica de estos 2 contaminantes Metarhizium purpureo-genum(similis) y Monascus ruber fue más bien una curiosidad esencial que el micólogo clínico adquiere en su contínua formación y ante la posibilidad de infecciones mixtas, pudiendo conjugar sus hallazgos junto al análisis taxonómico y los factores geográficos y edáficos asociados a su distribución. (AU)
Dermatophytoses belongs to a group of common mycotic diseases in skin and pharynals, where Trichophyton rubrum is the most frequent causative agent worldwide and present in our 2 cases of male patients with these mycoses, one in nails and the other in skin. However, the focus of this publication is mainly about the presence of 2 interesting contaminants (one in each clinical case) present only in the crops of the first sowings as saprophytes and therefore as dispersal propagules, associated with the environment and without clinical intervention demonstrated in both mycoses. The morphophysiological description of these 2 contaminants, Metarhizium purpureogenum (similis) and Monascus ruber was rather an essential curiosity that the clinical mycologist acquires in his continuous training and in the face of the possibility of mixed infections, being able to combine his findings together with the taxonomic analysis and the geographic and edaphic factors associated with its distribution. (AU)
Asunto(s)
Humanos , Masculino , Adulto , Persona de Mediana Edad , Trichophyton/crecimiento & desarrollo , Monascus/crecimiento & desarrollo , Metarhizium/crecimiento & desarrollo , Tiña/microbiología , Trichophyton/aislamiento & purificación , Trichophyton/ultraestructura , Cladosporium/crecimiento & desarrollo , Monascus/aislamiento & purificación , Olea/microbiología , Metarhizium/aislamiento & purificaciónRESUMEN
Three culture media were studied for red pigment production by Monascus ruber in submerged cultivation: rice flour (20 g L-1), sugarcane molasses (30 g L-1), and, finally, molasses + rice flour (10 g L-1+10 g L-1); all culture media were added of 5 g L-1 glycine as nitrogen source. Rice flour showed pigment production of 7.05 UA510nm and molasses 5.08 UA510nm, and the mixture of rice flour and molasses showed the best result of 16.38 UA510nm. Molasses culture presented good results for cell biomass production of 11.09 g L-1. With these results, it was observed that one substrate presented good pigment production (rice flour) and another attained better results for cell biomass growth (molasses), and a third medium containing 10 g L-1 of rice flour + 10 g L-1 of molasses was formulated. The results for this mixture showed satisfactory results, with global pigment productivity of 0.097 UA510nm h-1 and maximum productivity rate of 0.17 UA510nm h-1. The high production and productivity obtained for the mixture of rice flour and molasses indicated that the production of red pigment by submerged fermentation, using the mixture of these low-cost culture media, may be promising in terms of commercial production.
Asunto(s)
Harina/microbiología , Melaza/microbiología , Monascus/metabolismo , Oryza/microbiología , Pigmentos Biológicos/biosíntesis , Saccharum/microbiología , Biotransformación , Fermentación , Harina/análisis , Melaza/análisis , Monascus/crecimiento & desarrollo , Oryza/metabolismo , Saccharum/química , Residuos/análisisRESUMEN
BACKGROUND: The addition of fatty acids and other molecules to culture media may intensify the production of biomolecules, such as monascus pigments, however, few studies of this have been developed. Thus, the objective of the present study was to investigate the effects of adding sodium octanoate to the culture medium, with a view to increasing the synthesis and production of the pigments produced by Monascus ruber CCT 3802 on solid and submerged cultivations. METHODS: Monacus ruber CCT 3802 was cultivated on solid and submerged media supplemented with different concentrations of sodium octanoate. The radial growth rate of the colonies was obtained from the declivity of the linear regression of the radius of the colonies as a function of cultivation time and the kinetics of submerged cultivations were performed. The filtrate obtained was submitted to scanning spectrophotometry at a range from 350 to 550 nm and the color parameters were determined by using the CIELAB color system. The data were submitted to a univariate analysis of variance (ANOVA) and the means obtained for each treatment submitted to Tukey's test using Statistica version 5.0 software at a 5% level of significance. RESULTS: Sodium octanoate exerted a strong influence on growth and pigment production in solid and submerged cultivations. The values for L*, a* and b* were positive for pigments produced, with regards to colors close to red and yellow. In the media supplemented with 1.0 mM and 1.5 mM of sodium octanoate, the production of red pigments became expressive from 48 hours-cultivation, increasing considerably from the second to the fourth days. This shows that supplementation with sodium octanoate provides a greater production of pigments in a shorter time interval than the control culture, which required 144 hours of cultivation to present a higher value for AU510nm, which directly influenced pigment productivity. CONCLUSIONS: The addition of sodium octanoate exerted a significant influence on both microbial growth and pigment production in both solid and submerged cultivations. The supplementation of the submerged cultures with sodium octanoate was responsible for an expressive production of pigments in just 48 hours, whereas 144 hours were necessary in the absence of sodium octanoate. These results are promising for increasing the productivity of pigment production, including possibilities for application on an industrial scale.
Asunto(s)
Caprilatos , Color , Medios de Cultivo/química , Monascus/efectos de los fármacos , Pigmentación , Pigmentos Biológicos/biosíntesis , Cinética , Monascus/crecimiento & desarrollo , Monascus/metabolismoRESUMEN
ABSTRACT An ascomycetes fungus was isolated from brine storage of green olives of the Arauco cultivar imported from Argentina and identified as Monascus ruber. The combined effects of different concentrations of sodium chloride (3.5-5.5%), sodium benzoate (0-0.1%), potassium sorbate (0-0.05%) and temperature (30-40 °C) were investigated on the growth of M. ruber in the brine of stored table olives using a response surface methodology. A full 24 factorial design with three central points was first used in order to screen for the important factors (significant and marginally significant factors) and then a Face-Centered Central Composite Design was applied. Both preservatives prevented fungal spoilage, but potassium sorbate was the most efficient to control the fungi growth. The combined use of these preservatives did not show a synergistic effect. The results showed that the use of these salts may not be sufficient to prevent fungal spoilage and the greatest fungal growth was recorded at 30 °C.
Asunto(s)
Conservación de Alimentos/métodos , Monascus/crecimiento & desarrollo , Olea/microbiología , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/farmacología , Almacenamiento de Alimentos , Frutas/química , Frutas/microbiología , Concentración de Iones de Hidrógeno , Monascus/efectos de los fármacos , Olea/química , Benzoato de Sodio/análisis , Benzoato de Sodio/farmacología , Cloruro de Sodio/análisis , Cloruro de Sodio/farmacologíaRESUMEN
An ascomycetes fungus was isolated from brine storage of green olives of the Arauco cultivar imported from Argentina and identified as Monascus ruber. The combined effects of different concentrations of sodium chloride (3.5-5.5%), sodium benzoate (0-0.1%), potassium sorbate (0-0.05%) and temperature (30-40 °C) were investigated on the growth of M. ruber in the brine of stored table olives using a response surface methodology. A full 24 factorial design with three central points was first used in order to screen for the important factors (significant and marginally significant factors) and then a Face-Centered Central Composite Design was applied. Both preservatives prevented fungal spoilage, but potassium sorbate was the most efficient to control the fungi growth. The combined use of these preservatives did not show a synergistic effect. The results showed that the use of these salts may not be sufficient to prevent fungal spoilage and the greatest fungal growth was recorded at 30 °C.(AU)
Asunto(s)
Monascus/crecimiento & desarrollo , Conservantes de Alimentos/análisis , Olea/microbiología , Ácido Sórbico/química , Potasio/química , Benzoato de Sodio , Cloruro de Sodio , AscomicetosRESUMEN
An ascomycetes fungus was isolated from brine storage of green olives of the Arauco cultivar imported from Argentina and identified as Monascus ruber. The combined effects of different concentrations of sodium chloride (3.5-5.5%), sodium benzoate (0-0.1%), potassium sorbate (0-0.05%) and temperature (30-40°C) were investigated on the growth of M. ruber in the brine of stored table olives using a response surface methodology. A full 24 factorial design with three central points was first used in order to screen for the important factors (significant and marginally significant factors) and then a Face-Centered Central Composite Design was applied. Both preservatives prevented fungal spoilage, but potassium sorbate was the most efficient to control the fungi growth. The combined use of these preservatives did not show a synergistic effect. The results showed that the use of these salts may not be sufficient to prevent fungal spoilage and the greatest fungal growth was recorded at 30°C.
Asunto(s)
Conservación de Alimentos/métodos , Monascus/crecimiento & desarrollo , Olea/microbiología , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/farmacología , Almacenamiento de Alimentos , Frutas/química , Frutas/microbiología , Concentración de Iones de Hidrógeno , Monascus/efectos de los fármacos , Olea/química , Benzoato de Sodio/análisis , Benzoato de Sodio/farmacología , Cloruro de Sodio/análisis , Cloruro de Sodio/farmacologíaRESUMEN
Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO2 L-1 at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO2 g x-1 h-1 and 3.133 gx gO 2-1 and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.
Asunto(s)
Biomasa , Colorantes de Alimentos/metabolismo , Monascus/crecimiento & desarrollo , Pigmentos Biológicos/biosíntesis , CinéticaRESUMEN
To reduce environmental problems caused by glycerine accumulation and to make the production of biodiesel more profitable, crude glycerin without treatment was used as substrate for obtaining higher value-added bioproducts. Monascus ruber is a filamentous fungus that produces pigments, particularly red ones, which are used for coloring foods (rice wine and meat products). The interest in developing pigments from natural sources is increasing due to the restriction of using synthetic dyes. The effects of temperature, pH, microorganism morphology, aeration, nitrogen source, and substrates have been studied in the cultivation of M. ruber. In this work, it was observed that light intensity is also an important factor that should be considered for understanding the metabolism of the fungus. In M. ruber cultivation, inhibition of growth and pigment production was observed in Petri dishes and blaffed flasks exposed to direct illumination. Growth and pigment production were higher in Petri dishes and flasks exposed to red light and in the absence of light. Radial growth rate of M. ruber in plates in darkness was 1.50 mm day(-1) and in plates exposed to direct illumination was 0.59 mm day(-1). Maximum production of red pigments (8.32 UA) and biomass (8.82 g L(-1)) were obtained in baffled flasks covered with red film and 7.17 UA of red pigments, and 7.40 g L(-1) of biomass was obtained in flasks incubated in darkness. Under conditions of 1248 lux of luminance, the maximum pigment production was 4.48 UA, with production of 6.94 g L(-1) of biomass, indicating that the fungus has photoreceptors which influence the physiological responses.
Asunto(s)
Fermentación/efectos de la radiación , Luz , Monascus/crecimiento & desarrollo , Monascus/efectos de la radiación , Pigmentos Biológicos/biosíntesis , Biomasa , Reactores Biológicos , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Monascus/metabolismoRESUMEN
Monascus kaoliang was selected after a microbial screening as a highly active and selective whole cell catalyst for the reduction of ketones. In the present paper we describe the optimum growing conditions and an interesting immobilization procedure by adsorption in polyurethane foams (PUFs). This methodology is easy to perform and the immobilized catalyst is active, stable and reusable. The use of different co-substrates for cofactor regeneration was also tested and iso-propanol (i-PrOH) was found as the best co-substrate, as it leads to a catalyst reusable for 17 cycles, displaying better NADH regeneration properties than others e.g., glucose (10 cycles) or saccharose (6 cycles). The reduction of different prochiral ketones showed that the ketone reductase activity of this mould follows the Prelog's rule and kinetic experiments demonstrated that the process follows a pseudo-first kinetic order.