Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.979
1.
Biosens Bioelectron ; 258: 116336, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38692222

As pure antipodes may differ in biological interactions, pharmacology, and toxicity, discrimination of enantiomers is important in the pharmaceutical and agrochemical industries. Two major challenges in enantiomer determination are transducing and amplifying the distinct chiral-recognition signals. In this study, a light-sensitive organic photoelectrochemical transistor (OPECT) with homochiral character is developed for enantiomer discrimination. Demonstrated with the discrimination of glucose enantiomers, the photoelectrochemically active gate electrode is prepared by integrating Au nanoparticles (AuNPs) and a chiral Cu(II)-metal-organic framework (c-CuMOF) onto TiO2 nanotube arrays (TNT). The captured glucose enantiomers are oxidized to hydrogen peroxide (H2O2) by the oxidase-mimicking AuNPs-loaded c-CuMOF. Based on the confinement effect of the mesopocket structure of the c-CuMOF and the remarkable charge transfer ability of the 1D nanotubular architecture, variations in H2O2 yield are translated into significant changes in OPECT drain currents (ID) by inducing a catalytic precipitation reaction. Variations in ID confer a sensitive discrimination of glucose enantiomers with a limit of detection (LOD) of 0.07 µM for L-Glu and 0.05 µM for D-Glu. This enantiomer-driven gate electrode response strategy not only provides a new route for enantiomer identification, but also helps to understand the origin of the high stereoselectivity in living systems.


Biosensing Techniques , Electrochemical Techniques , Glucose , Gold , Hydrogen Peroxide , Limit of Detection , Metal Nanoparticles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques/instrumentation , Gold/chemistry , Electrochemical Techniques/instrumentation , Stereoisomerism , Metal Nanoparticles/chemistry , Glucose/analysis , Glucose/chemistry , Glucose/isolation & purification , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Titanium/chemistry , Transistors, Electronic , Copper/chemistry , Light , Monosaccharides/analysis , Monosaccharides/chemistry , Nanotubes/chemistry
2.
J Health Popul Nutr ; 43(1): 63, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741213

BACKGROUND: According to national guidelines, a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) is a second-line therapy option for irritable bowel syndrome (IBS) and improves functional intestinal symptoms. Numerous noteworthy results have been published in this field over the past fifteen years. This study aims to analyze the global research trend and hotspot of the low FODMAP diet research, and provide a comprehensive perspective and direction for researchers. METHODS: The Science Citation Index-Expanded of the Web of Science Core Collection (WoSCC) was used to identify low FODMAP diet-related articles and reviews. Three bibliometric programs (CiteSpace, VOSviewer, Scimago Graphic) were utilized to analyze and visualize the annual publications, authors, countries, institutions, journals, citations, and keywords. RESULTS: In total, 843 documents related to the low FODMAP diet research were published in 227 journals by 3,343 authors in 1,233 institutions from 59 countries. The United States, which was the most engaged nation in international collaboration, had the largest annual production and the fastest growth. The most productive organization was Monash University, and the most fruitful researcher was Gibson PR. Nutrients ranked first in terms of the number of published documents. The article "A diet low in FODMAPs reduces symptoms of irritable bowel syndrome" (Halmos EP, 2014) received the most co-citations. Keywords that appear frequently in the literature mainly involve two main aspects: the clinical efficacy evaluation and mechanism exploration of the low FODMAP diet. The term "gut microbiota" stands out as the most prominent keyword among the burst keywords that have remained prevalent till date. CONCLUSION: The restriction stage of the low FODMAP diet is superior to other dietary therapies for IBS in terms of symptom response, but it has a negative impact on the abundance of gut Bifidobacteria and diet quality. Identification of biomarkers to predict response to the low FODMAP diet is of great interest and has become the current research hotspot.


Bibliometrics , Diet, Carbohydrate-Restricted , Fermentation , Irritable Bowel Syndrome , Oligosaccharides , Humans , Irritable Bowel Syndrome/diet therapy , Diet, Carbohydrate-Restricted/methods , Oligosaccharides/administration & dosage , Disaccharides/administration & dosage , Monosaccharides/analysis , Polymers , Biomedical Research , FODMAP Diet
3.
Nat Commun ; 15(1): 2979, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582892

Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.


Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Polysaccharides/metabolism , Monosaccharides/metabolism
4.
J Hazard Mater ; 470: 134244, 2024 May 15.
Article En | MEDLINE | ID: mdl-38598879

Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.


Cadmium , Spirulina , Spirulina/drug effects , Spirulina/metabolism , Cadmium/toxicity , Humic Substances , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/drug effects , Benzopyrans/pharmacology , Antioxidants/metabolism , Monosaccharides
5.
Methods Mol Biol ; 2788: 67-79, 2024.
Article En | MEDLINE | ID: mdl-38656509

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Chromatography, Reverse-Phase , Monosaccharides , Chromatography, Reverse-Phase/methods , Monosaccharides/chemistry , Monosaccharides/analysis , Chromatography, High Pressure Liquid/methods , Spectrophotometry, Ultraviolet/methods , Edaravone/chemistry , Antipyrine/analogs & derivatives , Antipyrine/chemistry
6.
Food Res Int ; 184: 114233, 2024 May.
Article En | MEDLINE | ID: mdl-38609217

Meju is essential for making diverse traditional fermented soybean foods in Korea. To understand the changes in carbohydrates during fermentation, we aimed to identify autochthonous microorganisms from spontaneously fermented meju and compare the alterations in monosaccharides and oligosaccharides throughout the fermentation process. Microbial diversity was determined using a metabarcoding approach, and monosaccharide and oligosaccharide profiles were obtained by HPLC-Q-TOF MS and HPLC-MS/MS analyses, respectively. The dominant bacterial genera were Weissella, Lactobacillus, and Leuconostoc, while Mucor was highly abundant in the fungal community. The total monosaccharide content increased from Day 0 to Day 50, with the highest amount being 4.37 mg/g. Oligosaccharide profiling revealed the degradation of soybean dietary fiber during fermentation, and novel oligosaccharide structures were also discovered. Correlation analysis revealed that the fungus Mucor was positively related to pentose-containing oligosaccharides, galactose, and galacturonic acid, indicating that Mucor may degrade soybean dietary fibers such as xylogalacturonan, arabinogalactan, and rhamnogalacturonan. The negative relationships between the abundances of Weissella and oligo- and monosaccharides suggested that the bacteria may utilize saccharides for fermentation. These findings provide insights into the mechanisms underlying carbohydrate degradation and utilization; the key components involved in saccharide transformation that contribute to the characteristics of traditional meju were subsequently identified.


Microbiota , Monosaccharides , Glycine max , Fermentation , Tandem Mass Spectrometry , Oligosaccharides , Dietary Fiber
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1186-1195, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621965

Polysaccharides from medicinal plant resources are a kind of polymers extracted from medicinal plants. They are complex long chains formed by different monosaccharides connected via glucosidic bonds. These polysaccharides usually have straight chain and branched chain structures, and their relative molecular weight changes greatly. Modern studies have shown that the biological activi-ty of polysaccharides from medicinal plant resources is closely related to their relative molecular weight. This paper first reviewed the preparation and detection methods of polysaccharides from medicinal plant resources with different relative molecular weights. Then, the paper summarized and analyzed the general experience of the correlation between efficacy and relative molecular weight of polysaccharides from medicinal plant resources with different molecular weights. It was considered that polysaccharides with large relative molecular weights(>100 kDa) play a leading role in immune regulation. Polysaccharides with medium relative molecular weights(10-100 kDa) play a leading role in immune regulation and the protection of the liver. Polysaccharides with small relative molecular weights(<10 kDa) play a leading role in anti-oxidation, regulation of intestinal flora, regulation of blood glucose and lipids, anti-fatigue, and the protection of nerves. Therefore, precise development of polysaccharides from medicinal plant resources based on relative molecular weight is expected to improve their biological activity and application value.


Plants, Medicinal , Plants, Medicinal/chemistry , Molecular Weight , Polysaccharides/chemistry , Monosaccharides/chemistry
8.
Lancet Gastroenterol Hepatol ; 9(6): 507-520, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643782

BACKGROUND: Dietary advice and medical treatments are recommended to patients with irritable bowel syndrome (IBS). Studies have not yet compared the efficacy of dietary treatment with pharmacological treatment targeting the predominant IBS symptom. We therefore aimed to compare the effects of two restrictive dietary treatment options versus optimised medical treatment in people with IBS. METHODS: This single-centre, single-blind, randomised controlled trial was conducted in a specialised outpatient clinic at the Sahlgrenska University Hospital, Gothenburg, Sweden. Participants (aged ≥18 years) with moderate-to-severe IBS (Rome IV; IBS Severity Scoring System [IBS-SSS] ≥175) and no other serious diseases or food allergies were randomly assigned (1:1:1) by web-based randomisation to receive a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) plus traditional IBS dietary advice recommended by the UK National Institute for Health and Care Excellence (hereafter the LFTD diet), a fibre-optimised diet low in total carbohydrates and high in protein and fat (hereafter the low-carbohydrate diet), or optimised medical treatment based on predominant IBS symptom. Participants were masked to the names of the diets, but the pharmacological treatment was open-label. The intervention lasted 4 weeks, after which time participants in the dietary interventions were unmasked to their diets and encouraged to continue during 6 months' follow-up, participants in the LFTD group were instructed on how to reintroduce FODMAPs, and participants receiving pharmacological treatment were offered diet counselling and to continue with their medication. The primary endpoint was the proportion of participants who responded to the 4-week intervention, defined as a reduction of 50 or more in IBS-SSS relative to baseline, and was analysed per modified intention-to-treat (ie, all participants who started the intervention). Safety was analysed in the modified intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02970591, and is complete. FINDINGS: Between Jan 24, 2017, and Sept 2, 2021, 1104 participants were assessed for eligibility and 304 were randomly assigned. Ten participants did not receive their intervention after randomisation and thus 294 participants were included in the modified intention-to-treat population (96 assigned to the LFTD diet, 97 to the low-carbohydrate diet, and 101 to optimised medical treatment). 241 (82%) of 294 participants were women and 53 (18%) were men and the mean age was 38 (SD 13). After 4 weeks, 73 (76%) of 96 participants in the LFTD diet group, 69 (71%) of 97 participants in the low-carbohydrate diet group, and 59 (58%) of 101 participants in the optimised medical treatment group had a reduction of 50 or more in IBS-SSS compared with baseline, with a significant difference between the groups (p=0·023). 91 (95%) of 96 participants completed 4 weeks in the LFTD group, 92 (95%) of 97 completed 4 weeks in the low-carbohydrate group, and 91 (90%) of 101 completed 4 weeks in the optimised medical treatment group. Two individuals in each of the intervention groups stated that adverse events were the reason for discontinuing the 4-week intervention. Five (5%) of 91 participants in the optimised medical treatment group stopped treatment prematurely due to side-effects. No serious adverse events or treatment-related deaths occurred. INTERPRETATION: Two 4-week dietary interventions and optimised medical treatment reduced the severity of IBS symptoms, with a larger effect size in the diet groups. Dietary interventions might be considered as an initial treatment for patients with IBS. Research is needed to enable personalised treatment strategies. FUNDING: The Healthcare Board Region Västra Götaland, the Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, AFA Insurance, grants from the Swedish state, the Wilhelm and Martina Lundgren Science Foundation, Skandia, the Dietary Science Foundation, and the Nanna Swartz Foundation.


Diet, Carbohydrate-Restricted , Disaccharides , Irritable Bowel Syndrome , Monosaccharides , Oligosaccharides , Humans , Irritable Bowel Syndrome/diet therapy , Irritable Bowel Syndrome/therapy , Female , Male , Diet, Carbohydrate-Restricted/methods , Single-Blind Method , Adult , Middle Aged , Oligosaccharides/administration & dosage , Disaccharides/adverse effects , Disaccharides/therapeutic use , Monosaccharides/adverse effects , Monosaccharides/administration & dosage , Treatment Outcome , Dietary Fiber/administration & dosage , Dietary Fiber/therapeutic use , Polymers , Fermentation , Sweden , Severity of Illness Index , FODMAP Diet
9.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675630

AHP-3a, a triple-helix acidic polysaccharide isolated from Alpinia officinarum Hance, was evaluated for its anticancer and antioxidant activities. The physicochemical properties and structure of AHP-3a were investigated through gel permeation chromatography, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The weight-average molecular weight of AHP-3a was 484 kDa, with the molar percentages of GalA, Gal, Ara, Xyl, Rha, Glc, GlcA, and Fuc being 35.4%, 21.4%, 16.9%, 11.8%, 8.9%, 3.1%, 2.0%, and 0.5%, respectively. Based on the results of the monosaccharide composition analysis, methylation analysis, and NMR spectroscopy, the main chain of AHP-3a was presumed to consist of (1→4)-α-D-GalpA and (1→2)-α-L-Rhap residues, which is a pectic polysaccharide with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) structural domains containing side chains. In addition, the results of the antioxidant activity assay revealed that the ability of AHP-3a to scavenge DPPH, ABTS, and OH free radicals increased with an increase in its concentration. Moreover, according to the results from the EdU, wound healing, and Transwell assays, AHP-3a can control the proliferation, migration, and invasion of HepG2 and Huh7 hepatocellular carcinoma cells without causing any damage to healthy cells. Thus, AHP-3a may be a natural antioxidant and anticancer component.


Alpinia , Antioxidants , Biphenyl Compounds , Polysaccharides , Alpinia/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hep G2 Cells , Molecular Weight , Cell Line, Tumor , Monosaccharides/analysis , Monosaccharides/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Picrates/chemistry , Picrates/antagonists & inhibitors , Spectroscopy, Fourier Transform Infrared
10.
PLoS One ; 19(4): e0302403, 2024.
Article En | MEDLINE | ID: mdl-38662754

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Hydrogen Peroxide , Leydig Cells , Plant Extracts , Testosterone , Animals , Leydig Cells/metabolism , Leydig Cells/drug effects , Mice , Hydrogen Peroxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Cell Line , Amino Acids/metabolism , Monosaccharides , Sambucus/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phosphoproteins/metabolism , Phosphoproteins/genetics
11.
Int J Biol Macromol ; 267(Pt 1): 131396, 2024 May.
Article En | MEDLINE | ID: mdl-38582468

In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 â†’ 4)-Glcp-(1 â†’ 2)-Glcp-(1 â†’ 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 â†’ 6)-Manp-(1 â†’ 3)-Glcp-(1 â†’ 6)-Glcp-(1 â†’ 2)-Manp-(1 â†’ 6)-Glcp-(1 â†’ 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.


Antioxidants , Molecular Weight , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Monosaccharides/analysis , Monosaccharides/chemistry , Methylation
12.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 May.
Article En | MEDLINE | ID: mdl-38582477

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.


Antioxidants , Colitis, Ulcerative , Cordyceps , Zebrafish , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , RAW 264.7 Cells , Cordyceps/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis , Reactive Oxygen Species/metabolism , Hydrogen Peroxide
13.
Int J Biol Macromol ; 267(Pt 2): 131551, 2024 May.
Article En | MEDLINE | ID: mdl-38621566

Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1 â†’ 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 â†’ 4)-α-GalpA-(6-OMe)-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.


Antioxidants , Gentiana , Polysaccharides , Ultraviolet Rays , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gentiana/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Monosaccharides/analysis , Molecular Weight , Methylation , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/isolation & purification
14.
J Am Soc Mass Spectrom ; 35(5): 1012-1020, 2024 May 01.
Article En | MEDLINE | ID: mdl-38634722

To understand the mode of action of bioactive oligosaccharides, such as prebiotics, in-depth knowledge about all structural features, including monosaccharide composition, linkage type, and anomeric configuration, is necessary. Current analytical techniques provide limited information about structural features within complex mixtures unless preceded by extensive purification. In this study, we propose an approach employing cyclic ion mobility spectrometry (cIMS) for the in-depth characterization of oligosaccharides, here demonstrated for disaccharides. We were able to separate galactose and glucose anomers by exploiting the high ion mobility resolution of cIMS. Using the obtained monosaccharide mobilograms as references, we determined the composition and anomeric configuration of 4ß-galactobiose by studying the monosaccharide fragments generated by collision-induced dissociation (CID) before the ion mobility separation. Drift times and individual MS2 spectra of partially resolved reducing-end anomers of 4ß-galactobiose, 4ß-galactosylglucose (lactose), and 4ß-glucosylglucose (cellobiose) were obtained by deconvolution using CID fragmentation induced in the transfer region between the cIMS cell and TOF analyzer. The composition and anomeric configuration of the reducing end anomers of these disaccharides were identified using cIMS2 approaches, where first each anomer was isolated using cIMS and individually fragmented, and the monosaccharide fragments were again separated by cIMS for comparison with monosaccharide standards. With these results we demonstrate the promising application of cIMS for the structural characterization of isomeric oligosaccharides.


Disaccharides , Ion Mobility Spectrometry , Monosaccharides , Ion Mobility Spectrometry/methods , Disaccharides/chemistry , Monosaccharides/chemistry , Carbohydrate Conformation
15.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 May.
Article En | MEDLINE | ID: mdl-38636747

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.


Aging , Antioxidants , Caenorhabditis elegans , Oxidative Stress , Polysaccharides , Animals , Caenorhabditis elegans/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Molecular Weight , Monosaccharides/analysis , Longevity/drug effects
16.
Org Biomol Chem ; 22(19): 3854-3859, 2024 05 15.
Article En | MEDLINE | ID: mdl-38639197

The molecular recognition of saccharides by synthetic hosts has become an appealing but elusive task in the last decades. Herein, we combine Dynamic Combinatorial Chemistry (DCC) for the rapid self-assembly and screening of virtual libraries of receptors, with the use of ITC and NMR to validate the hits and molecular modelling to understand the binding mechanisms. We discovered a minimalistic receptor, 1F (N-benzyl-L-phenylalanine), with considerable affinity for fructose (Ka = 1762 M-1) and remarkable selectivity (>50-fold) over other common monosaccharides. The approach accelerates the discovery process of receptors for saccharides.


Combinatorial Chemistry Techniques , Monosaccharides , Monosaccharides/chemistry , Models, Molecular , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/chemical synthesis
17.
Int J Biol Macromol ; 268(Pt 2): 131647, 2024 May.
Article En | MEDLINE | ID: mdl-38653432

Herein, we describe a detailed protocol to extract the mucilage from different species of the genus Opuntia spp. (i.e., Opuntia Ficus (OFi), Opuntia Dillenii (ODi) and Opuntia Robusta (ORo)). The extracted mucilage was characterized by NMR, FTIR-ATR, HPLC, and TGA. OFi was found to have the highest phenolic content, 7.84 ± 1.93 mg catechol/g mucilage. The mucilage from the three species were characterized by having a high content of monosaccharides, being mannose and glucose the most abundant components (ca. 48-73 % and 23-35 %, respectively). In the context of biomass revalorization, the mucilage was proven to serve as a reducing and stabilizing agent in the synthesis of gold nanoparticles (AuNP/mucilage). The synthesis was optimized with a mucilage concentration of 2 mg/mL using 12.5 µL of KAuCl4 and was carried out at 80 °C for 90 min. This protocol afforded spherical nanoparticles with an average size of 9.7 ± 4.0 nm that were stable for at least 14 days, as demonstrated by TEM. Synthesized AuNP/mucilage was evaluated as a plasmonic catalyst for the reduction of 4-nitrophenol as model reaction, showing a considerable enhancement in its kapp of 97 % under white light and a decrease of 24.8 % in its activation energy.


Gold , Opuntia , Plant Mucilage , Opuntia/chemistry , Plant Mucilage/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Monosaccharides/chemistry , Monosaccharides/analysis
18.
J Pharm Biomed Anal ; 243: 116077, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38460276

BACKGROUND: Dendrobium officinale Kimura et Migo (DO), a valuable Chinese herbal medicine, has been reported to exhibit potential effects in the prevention and treatment of lung cancer. However, its material basis and mechanism of action have not been comprehensively analyzed. PURPOSE: The objective of this study was to preliminarily elucidate the active components and pharmacological mechanisms of DO in treating lung cancer, according to UPLC-Q/TOF-MS, HPAEC-PAD, network pharmacology, molecular docking, and experimental verification. METHODS: The chemical components of DO were identified via UPLC-Q/TOF-MS, while the monosaccharide composition of Dendrobium officinale polysaccharide (DOP) was determined by HPAEC-PAD. The prospective active constituents of DO as well as their respective targets were predicted in the combined database of Swiss ADME and Swiss Target Prediction. Relevant disease targets for lung cancer were searched in OMIM, TTD, and Genecards databases. Further, the active compounds and potential core targets of DO against lung cancer were found by the C-T-D network and the PPI network, respectively. The core targets were then subjected to enrichment analysis in the Metascape database. The main active compounds were molecularly docked to the core targets and visualized. Finally, the viability of A549 cells and the relative quantity of associated proteins within the major signaling pathway were detected. RESULTS: 249 ingredients were identified from DO, including 39 flavonoids, 39 bibenzyls, 50 organic acids, 8 phenanthrenes, 27 phenylpropanoids, 17 alkaloids, 17 amino acids and their derivatives, 7 monosaccharides, and 45 others. Here, 50 main active compounds with high degree values were attained through the C-T-D network, mainly consisting of bibenzyls and monosaccharides. Based on the PPI network analysis, 10 core targets were further predicted, including HSP90AA1, SRC, ESR1, CREBBP, MAPK3, AKT1, PIK3R1, PIK3CA, HIF1A, and HDAC1. The results of the enrichment analysis and molecular docking indicated a close association between the therapeutic mechanism of DO and the PI3K-Akt signaling pathway. It was confirmed that the bibenzyl extract and erianin could inhibit the multiplication of A549 cells in vitro. Furthermore, erianin was found to down-regulate the relative expressions of p-AKT and p-PI3K proteins within the PI3K-Akt signaling pathway. CONCLUSIONS: This study predicted that DO could treat lung cancer through various components, multiple targets, and diverse pathways. Bibenzyls from DO might exert anti-lung cancer activity by inhibiting cancer cell proliferation and modulating the PI3K-Akt signaling pathway. A fundamental reference for further studies and clinical therapy was given by the above data.


Bibenzyls , Dendrobium , Drugs, Chinese Herbal , Lung Neoplasms , Phenol , Lung Neoplasms/drug therapy , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Prospective Studies , Proto-Oncogene Proteins c-akt , Monosaccharides , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
19.
Int J Biol Macromol ; 265(Pt 2): 130891, 2024 Apr.
Article En | MEDLINE | ID: mdl-38493821

Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.


Avena , Polysaccharides , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Monosaccharides/chemistry , Food Additives
20.
Int J Biol Macromol ; 265(Pt 2): 130952, 2024 Apr.
Article En | MEDLINE | ID: mdl-38499119

The traditional textile degumming process produces abundant wastewater, which contains a lot of monosaccharides and oligosaccharides. It is of great economic and environmental significance to utilize these carbohydrates in high value. In this study, high performance liquid chromatography (HPLC) was used to analyze the carbohydrate components in kenaf degumming wastewater, and then the production of C-dots using the wastewater was explored. The results showed that the types and content in the degumming wastewater were monosaccharides (glucose, xylose and arabinose) and oligosaccharides (dextran, xylan and araban). The carbohydrate (mainly glucan and xylan) content in wastewater accounted for 91.16 % of the total carbohydrates weight loss in kenaf degumming process. By using hydrolysis and hydrothermal reaction on kenaf degumming wastewater, blue-green carbon dots (C-dots) with good performance were prepared and successfully applied to anti-counterfeiting printing. In particular, the as-prepared C-dots prepared from kenaf degumming wastewater with urea added (WUC-dots) showed an excitation-dependent photoluminescence (PL) spectrum and quantum yield (QY) of 2.4 % in aqueous solution. The fluorescent code exhibited a clear outline, excitation-tunable color and good stability, showing a great potential for anti-counterfeiting system.


Hibiscus , Quantum Dots , Wastewater , Carbon/chemistry , Xylans , Monosaccharides , Oligosaccharides , Quantum Dots/chemistry
...