Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309502

RESUMEN

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


Asunto(s)
Proteínas de Unión al ADN , Células Madre Embrionarias de Ratones , Proteína Quinasa C , Animales , Ratones , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Indoles/farmacología , Maleimidas/farmacología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/enzimología , Células Madre Embrionarias de Ratones/fisiología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
2.
Biochem Biophys Res Commun ; 599: 156-163, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35202849

RESUMEN

Primitive Endoderm (PrE) is an extraembryonic structure derived from inner cell mass (ICM) in the blastocysts. Its interaction with the epiblast is critical to sustain embryonic growth and embryonic pattern. In this study, we reported a simple and efficient method to induce the differentiation of mouse Embryonic Stem Cells (mESCs) into PrE cells. In the process of ESC monolayer adherent culture, 1 µM atRA and 10 µM CHIR inducers were used to activate RA and Wnt signaling pathways respectively. After 9 days of differentiation, the proportion of PrE cells was up to 85%. Further studies indicated that Wnt signaling pathway acted as a switch that RA induces mESCs differentiation between SMC and PrE cell. In the presence of only RA signaling, mESCs adopted the fate of smooth muscle cells (SMCs); Simultaneous activation of the Wnt signaling pathway changed the differentiation fate of mESCs into PrE cells. This efficient induction method can provide new cellular resources and models for relevant studies of PrE.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Endodermo/citología , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Células Madre Embrionarias de Ratones/fisiología , Piridinas/farmacología , Pirimidinas/farmacología , Tretinoina/farmacología , Vía de Señalización Wnt/efectos de los fármacos
3.
J Assist Reprod Genet ; 38(12): 3145-3153, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34618297

RESUMEN

PURPOSE: To investigate whether inhibition of LINE-1 affects telomere reprogramming during 2-cell embryo development. METHODS: Mouse zygotes were cultured with or without 1 µM azidothymidine (AZT) for up to 15 h (early 2-cell, G1/S) or 24 h (late 2-cell, S/G2). Gene expression and DNA copy number were determined by RT-qPCR and qPCR respectively. Immunostaining and telomeric PNA-FISH were performed for co-localization between telomeres and ZSCAN4 or LINE-1-Orf1p. RESULTS: LINE-1 copy number was remarkably reduced in later 2-cell embryos by exposure to 1 µM AZT, and telomere lengths in late 2-cell embryos with AZT were significantly shorter compared to control embryos (P = 0.0002). Additionally, in the absence of LINE-1 inhibition, Dux, Zscan4, and LINE-1 were highly transcribed in early 2-cell embryos, as compared to late 2-cell embryos (P < 0.0001), suggesting that these 2-cell genes are activated at the early 2-cell stage. However, in early 2-cell embryos with AZT treatment, mRNA levels of Dux, Zscan4, and LINE-1 were significantly decreased. Furthermore, both Zscan4 and LINE-1 encoded proteins localized to telomere regions in 2-cell embryos, but this co-localization was dramatically reduced after AZT treatment (P < 0.001). CONCLUSIONS: Upon inhibition of LINE-1 retrotransposition in mouse 2-cell embryos, Dux, Zscan4, and LINE-1 were significantly downregulated, and telomere elongation was blocked. ZSCAN4 foci and their co-localization with telomeres were also significantly decreased, indicating that ZSCAN4 is an essential component of the telomere reprogramming that occurs in mice at the 2-cell stage. Our findings also suggest that LINE-1 may directly contribute to telomere reprogramming in addition to regulating gene expression.


Asunto(s)
Embrión de Mamíferos/fisiología , Desarrollo Embrionario/genética , Proteínas de Unión al ARN/genética , Telómero/genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Desarrollo Embrionario/fisiología , Ratones , Células Madre Embrionarias de Ratones/fisiología , Cigoto/fisiología
4.
Mol Biol Cell ; 32(22): ar40, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613789

RESUMEN

Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.


Asunto(s)
Aurora Quinasa B/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/metabolismo , Células A549 , Animales , Aurora Quinasa B/genética , Diferenciación Celular/fisiología , Supervivencia Celular , Células Cultivadas , Endodermo/citología , Endodermo/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Humanos , Mesodermo/citología , Ratones , Células Madre Embrionarias de Ratones/fisiología , Mutación , Fosforilación , Factores de Transcripción/genética
5.
Nat Struct Mol Biol ; 28(10): 811-824, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34608337

RESUMEN

The Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The inter-relatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved. Here, by exploiting rapid degron-based approaches and time-resolved genomics, we kinetically dissect Polycomb-mediated repression and discover that PRC1 functions independently of PRC2 to counteract RNA polymerase II binding and transcription initiation. Using single-cell gene expression analysis, we reveal that PRC1 acts uniformly within the cell population and that repression is achieved by controlling transcriptional burst frequency. These important new discoveries provide a mechanistic and conceptual framework for Polycomb-dependent transcriptional control.


Asunto(s)
Histonas/genética , Complejo Represivo Polycomb 1/genética , Iniciación de la Transcripción Genética , Animales , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Histonas/metabolismo , Lisina/genética , Masculino , Ratones , Células Madre Embrionarias de Ratones/fisiología , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN Polimerasa II/metabolismo , Análisis de la Célula Individual
6.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638648

RESUMEN

Otic organoids have the potential to resolve current challenges in hearing loss research. The reproduction of the delicate and complex structure of the mammalian cochlea using organoids requires high efficiency and specificity. Recent attempts to strengthen otic organoids have focused on the effects of the Wnt signaling pathway on stem cell differentiation. One important aspect of this is the evaluation of undesirable effects of differentiation after Wnt activation. In the present study, we differentiated mouse embryonic stem cell embryoid bodies (EB) into otic organoids and observed two morphologies with different cell fates. EBs that underwent a core ejection process, or 'enucleation,' were similar to previously reported inner ear organoids. Meanwhile, EBs that retained their core demonstrated features characteristic of neural organoids. The application of a Wnt agonist during the maturation phase increased enucleation, as well as otic organoid formation, in turn leading to sensory hair cell-like cell generation. However, with a longer incubation period, Wnt activation also led to EBs with 'beating' organoids that exhibited spontaneous movement. This observation emphasizes the necessity of optimizing Wnt enhancement for the differentiation of specific cells, such as those found in the inner ear.


Asunto(s)
Diferenciación Celular/fisiología , Cóclea/metabolismo , Cóclea/fisiología , Organoides/metabolismo , Organoides/fisiología , Vía de Señalización Wnt/fisiología , Animales , Células Cultivadas , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Células Madre Pluripotentes/metabolismo
7.
Stem Cell Res ; 56: 102537, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562798

RESUMEN

As an important mechanical cue in the extracellular microenvironment, osmotic stress directly affects the proliferation, migration, and differentiation of cells. In this paper, we focused on the influence of hypertonic pressure on the colony morphology, stemness, and self-renew of mouse embryonic stem cells (mESCs). Our results showed that culture media with hypertonic pressure are more conducive to the maintenance of 3D colony morphology and pluripotency of mESCs after withdrawing the glycogen synthase kinase 3ß (GSK3ß) inhibitor CHIR99021 and the mitogen-activated protein kinase (MEK) inhibitor PD0325901 (hereinafter referred to as 2i) for 48 h. Furthermore, we revealed the microscopic mechanisms of the this finding: hypertonic pressure resulted in the depolymerization of F-actin cytoskeleton and limits Yes-associated protein (hereinafter referred to as YAP) transmission into the nucleus which play a vital role in the regulation of cell proliferation, and resulting in cell-cycle arrest at last.


Asunto(s)
Células Madre Embrionarias de Ratones , Presión Osmótica , Animales , Benzamidas , Diferenciación Celular , Proliferación Celular , Difenilamina/análogos & derivados , Ratones , Proteínas Quinasas Activadas por Mitógenos , Células Madre Embrionarias de Ratones/fisiología
8.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34475317

RESUMEN

This study aimed to examine the expression of the genes associated with different development stages of primordial germ cells (PGCs) in differentiating mouse embryonic stem cells (mESCs). The cells were cultured in three groups of control, 10-8 M of all-trans retinoic acid and the combination of 10-7 M of Progesterone and retinoic acid for 7, 12, 17, and 22 days. Immunofluorescent and Quantitative RT-PCR were used to evaluate the effect of progesterone on the differentiation of mESCs into primordial germ cells. RA-treated cells exhibited increased expression of Fragilis, Stella, Dazl, Stra8, Sycp3, and Gdf9 genes and decreased expression of Oct4, Mvh genes compared to the non-treated controls. Furthermore, RA in combination with progesterone (RA?P) led to increased expression of Oct4, Fragilis, Stella, Dazl, Sycp3, Gdf9 and decreased expression of Mvh, and Stra8 genes compared to the RA-treated scenario. Immunofluorescence detection of Stella and Mvh showed that the expression levels of the cells treated with RA+P are much higher than those of the other groups. Our project showed that under the influence of the induced factors, mESCs can spontaneously differentiate into germ cells. Also, the combination of RA+P can enhance and accelerate the differentiation of mESCs into germ cells.


Asunto(s)
Células Madre Embrionarias de Ratones/efectos de los fármacos , Progesterona/farmacología , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Germinativas , Ratones , Células Madre Embrionarias de Ratones/fisiología
9.
Nat Methods ; 18(9): 1068-1074, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34480152

RESUMEN

In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Citoplasma/genética , Cinética , Lipopolisacáridos/farmacología , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Células RAW 264.7 , ARN Mensajero/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Ribosomas/efectos de los fármacos , Factores de Tiempo
10.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34480159

RESUMEN

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Asunto(s)
Adenosina/análogos & derivados , Estabilidad del ARN/genética , Análisis de Secuencia de ARN/métodos , Adenosina/análisis , Adenosina/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Expresión Génica , Semivida , Meiosis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Levaduras/genética
11.
STAR Protoc ; 2(3): 100764, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34485936

RESUMEN

We present a simple, fast, and robust protocol (low-input ATAC&mRNA-seq) to simultaneously generate ATAC-seq and mRNA-seq libraries from the same cells in limited cell numbers by coupling a simplified ATAC procedure using whole cells with a novel mRNA-seq approach that features a seamless on-bead process including direct mRNA isolation from the cell lysate, solid-phase cDNA synthesis, and direct tagmentation of mRNA/cDNA hybrids for library preparation. It enables dual-omics profiling from limited material when joint epigenome and transcriptome analyses are needed. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).


Asunto(s)
Cromatina/genética , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Animales , ADN Complementario/síntesis química , Perfilación de la Expresión Génica/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones , Células Madre Embrionarias de Ratones/fisiología , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ARN/instrumentación , Técnicas de Síntesis en Fase Sólida
12.
Reprod Toxicol ; 106: 18-24, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547414

RESUMEN

2,2',4,4'-Tetrabromodiphenyl ether (BDE47) poses potential risks to reproduction and development, but the mechanism of its toxicity has not yet been elucidated. To explore the developmental toxicity of BDE47, mouse embryonic stem cells (mESCs), which are ideal models for testing the developmental toxicity of environmental contaminants in vitro, were exposed to BDE47 (0.04 µM, 1 µM, 25 µM, or 100 µM) for 24 h or 48 h in this study. Our results indicated that BDE47 treatment changed the morphology of mESCs, inhibited cell viability and increased apoptosis. In addition, alkaline phosphatase (AP) staining in mESCs was significantly decreased after BDE47 treatment (25 µM and 100 µM), indicating that BDE47 treatment affected the pluripotency of mESCs. Through a cell immunofluorescence assay, we found that the fluorescence intensities of Oct4, Sox2 and Nanog were all significantly lower in the group treated with the highest BDE47 concentration (100 µM) than in the control group, consistent with the qRT-PCR and Western blot results. The levels of miR-145 and miR-34a, which regulate genes related to cell differentiation, were significantly increased in BDE47-treated mESCs, further clarifying the potential mechanism. Overall, our findings demonstrate that BDE47 exposure upregulates the expression of miR-145 and miR-34a and in turn downregulates the expression of Oct4, Sox2 and Nanog, thereby affecting apoptosis and pluripotency and causing toxicity during embryonic development.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Células Madre Embrionarias de Ratones/efectos de los fármacos , Fosfatasa Alcalina/análisis , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Ratones , Células Madre Embrionarias de Ratones/enzimología , Células Madre Embrionarias de Ratones/fisiología
13.
Nat Methods ; 18(9): 1056-1059, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34446921

RESUMEN

Single-cell Hi-C (scHi-C) analysis has been increasingly used to map chromatin architecture in diverse tissue contexts, but computational tools to define chromatin loops at high resolution from scHi-C data are still lacking. Here, we describe Single-Nucleus Analysis Pipeline for Hi-C (SnapHiC), a method that can identify chromatin loops at high resolution and accuracy from scHi-C data. Using scHi-C data from 742 mouse embryonic stem cells, we benchmark SnapHiC against a number of computational tools developed for mapping chromatin loops and interactions from bulk Hi-C. We further demonstrate its use by analyzing single-nucleus methyl-3C-seq data from 2,869 human prefrontal cortical cells, which uncovers cell type-specific chromatin loops and predicts putative target genes for noncoding sequence variants associated with neuropsychiatric disorders. Our results indicate that SnapHiC could facilitate the analysis of cell type-specific chromatin architecture and gene regulatory programs in complex tissues.


Asunto(s)
Cromatina/química , Biología Computacional/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Visualización de Datos , Bases de Datos Factuales , Expresión Génica , Humanos , Trastornos Mentales/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Polimorfismo de Nucleótido Simple , Corteza Prefrontal/citología , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
14.
Science ; 373(6552)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34437124

RESUMEN

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs). When FOSLCs were aggregated with PGCLCs derived from mouse embryonic stem cells, the PGCLCs entered meiosis to generate functional oocytes capable of fertilization and development to live offspring. Generating functional mouse oocytes in a reconstituted ovarian environment provides a method for in vitro oocyte production and follicle generation for a better understanding of mammalian reproduction.


Asunto(s)
Células Madre Embrionarias de Ratones/fisiología , Oocitos/fisiología , Oogénesis , Folículo Ovárico/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Masculino , Mesodermo/citología , Mesodermo/fisiología , Ratones , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/citología , Oocitos/citología , Folículo Ovárico/embriología , Folículo Ovárico/fisiología , RNA-Seq , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Transcriptoma
15.
Nat Commun ; 12(1): 4208, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244516

RESUMEN

The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFß and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFß-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.


Asunto(s)
Fibrocartílago/crecimiento & desarrollo , Células Madre Embrionarias de Ratones/fisiología , Tendones/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Activación Transcripcional , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Fibrocartílago/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Mecanotransducción Celular/genética , Ratones , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual , Tendones/citología , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/metabolismo
16.
Nat Genet ; 53(8): 1207-1220, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267371

RESUMEN

In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.


Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/fisiología , Distrofia Muscular Facioescapulohumeral/patología , Proteína p53 Supresora de Tumor/genética , Animales , Diferenciación Celular/genética , Reprogramación Celular , Daño del ADN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Nucleares/genética , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Cigoto/citología
17.
Reprod Toxicol ; 104: 76-84, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280493

RESUMEN

Fludioxnil is extensively used as a fungicide in agricultural application, but its possible impact on embryonic development is not yet well understood. In this study, the potential effect of fludioxonil on cardiac differentiation was evaluated in mouse embryonic stem cells (mESCs). The water-soluble tetrazolium (WST) and colony formation assays were conducted to confirm the effect of fludioxonil on proliferation of mESCs. The effect of fludioxonil on the ability of mESCs to form mouse embryoid bodies (mEBs) was determined by the hanging drop assay, whereas the ability of cardiomyocyte differentiation in the early stage was evaluated by determining the beating ratio (ratio of the number of contracting cells to the number of attached EBs) of cardiomyocytes. The viability of mESCs was significantly decreased (less than 50 %) at 10-5 M fludioxonil. Results of the colony formation assay revealed suppressed colony formation at 10-5 M fludioxonil (about 50 % at 5 days). Furthermore, the expressions of cell-cycle related proteins, i.e., cyclin D1, cyclin E, p21 and p27, were altered and trending towards inhibiting cell growth. Exposure to fludioxonil also resulted in reduced size of the mEB and induced increasing expression levels of the pluripotency markers Oct4, Sox2 and Nanog. Development of the beating ratio in the process of differentiation to cardiomyocytes derived from mESCs was completely inhibited after exposure to 10-5 M fludioxonil during the early stage of differentiation (day 5), whereas the beating ratio gradually increased after 5-day treatment. Simultaneously, expressions of the cardiomyocyte-related proteins, Gata4, Hand1 and cTnI, were inhibited after exposure to 10-5 M fludioxonil. Taken together, these results imply that fludioxonil may impact on the developmental process of mESCs, particularly the cardiac lineage.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dioxoles/toxicidad , Fungicidas Industriales/toxicidad , Pirroles/toxicidad , Animales , Línea Celular , Proliferación Celular , Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/fisiología , Miocitos Cardíacos/efectos de los fármacos , Organogénesis
18.
Nat Cell Biol ; 23(7): 692-703, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34168324

RESUMEN

It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.


Asunto(s)
Blastocisto/fisiología , Plasticidad de la Célula , Endodermo/fisiología , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal , Gastrulación , Células Madre Embrionarias de Ratones/fisiología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Línea Celular , Endodermo/citología , Endodermo/metabolismo , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones/metabolismo , Fenotipo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Tiempo
19.
Nat Commun ; 12(1): 2829, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990559

RESUMEN

Polycomb group (PcG) proteins maintain cell identity by repressing gene expression during development. Surprisingly, emerging studies have recently reported that a number of PcG proteins directly activate gene expression during cell fate determination process. However, the mechanisms by which they direct gene activation in pluripotency remain poorly understood. Here, we show that Phc1, a subunit of canonical polycomb repressive complex 1 (cPRC1), can exert its function in pluripotency maintenance via a PRC1-independent activation of Nanog. Ablation of Phc1 reduces the expression of Nanog and overexpression of Nanog partially rescues impaired pluripotency caused by Phc1 depletion. We find that Phc1 interacts with Nanog and activates Nanog transcription by stabilizing the genome-wide chromatin interactions of the Nanog locus. This adds to the already known canonical function of PRC1 in pluripotency maintenance via a PRC1-dependent repression of differentiation genes. Overall, our study reveals a function of Phc1 to activate Nanog transcription through regulating chromatin architecture and proposes a paradigm for PcG proteins to maintain pluripotency.


Asunto(s)
Cromatina/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Proteína Homeótica Nanog/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/fisiología , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Genoma Humano , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/fisiología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Genéticos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/deficiencia
20.
Artículo en Inglés | MEDLINE | ID: mdl-33865539

RESUMEN

Antimony (Sb) and its compounds are negative in gene mutation assays in bacteria and cultured mammalian cells but positive in some assays for clastogenicity and/or DNA damage. In order to better understand the modes of action for antimony genotoxicity, we assessed reporter gene activation by antimony and antimony compounds in the new expanded ToxTracker assay. ToxTracker evaluates the activation of biomarkers for different cellular defense mechanisms using a series of green fluorescent protein reporters inserted into mouse embryonic stem cell lines. The assay responds to: 1) DNA damage and inhibition of DNA replication; 2) oxidative stress; 3) unfolded protein response (protein damage); and 4) p53-dependent cellular stress. Sb metal powder, six trivalent (Sb(III)) compounds, and five pentavalent antimony (Sb(V)) compounds were assessed. Sb powder and all six Sb(III) compounds activated oxidative stress ToxTracker reporters at non-toxic doses. Of the five Sb(V) compounds, antimony pentachloride and potassium hexahydroantimonate induced a robust oxidative stress response while sodium antimonate induced only a weak oxidative stress response. At higher concentrations (up to either 75 % toxicity or the highest dissolved concentration tested), Sb powder and all Sb(III) compounds except for antimony trichloride induced the unfolded protein response. Of the five Sb(V) compounds tested, only potassium hexahydroantimonate induced weak activation of the unfolded protein response and was also the only pentavalent compound to yield modest (30 %) cytotoxicity. None of the compounds tested activated the DNA damage/inhibition of DNA replication reporters, nor did they activate the p53-dependent response. All Sb(III) compounds, Sb powder, and three of the five Sb(V) compounds activated the oxidative stress reporters, but there was no activation of reporters associated with DNA damage and repair or p53-dependent cellular stress. The consistent activation of reporters for oxidative stress suggests this mode of action may underlie genotoxicity responses for antimony and its compounds.


Asunto(s)
Antimonio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Antimonio/química , Células Cultivadas , Cloruros/toxicidad , Daño del ADN , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/fisiología , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA