Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.705
1.
Front Immunol ; 15: 1389018, 2024.
Article En | MEDLINE | ID: mdl-38720898

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Single-Domain Antibodies , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Single-Domain Antibodies/immunology , Immunotherapy, Adoptive/methods , Animals , Cell Line, Tumor , Mice , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Signaling Lymphocytic Activation Molecule Family/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
2.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747919

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


ADP-ribosyl Cyclase 1 , CD28 Antigens , Flow Cytometry , HLA-DR Antigens , Leukocyte Common Antigens , Multiple Myeloma , Humans , Multiple Myeloma/immunology , CD28 Antigens/immunology , CD28 Antigens/metabolism , ADP-ribosyl Cyclase 1/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HLA-DR Antigens/blood , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Female , Aged , CD57 Antigens/metabolism , Case-Control Studies , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Glycoproteins/immunology
3.
Lancet Oncol ; 25(5): e205-e216, 2024 05.
Article En | MEDLINE | ID: mdl-38697166

Multiple myeloma remains an incurable disease, despite the development of numerous drug classes and combinations that have contributed to improved overall survival. Immunotherapies directed against cancer cell-surface antigens, such as chimeric antigen receptor (CAR) T-cell therapy and T-cell-redirecting bispecific antibodies, have recently received regulatory approvals and shown unprecedented efficacy. However, these immunotherapies have unique mechanisms of action and toxicities that are different to previous treatments for myeloma, so experiences from clinical trials and early access programmes are essential for providing specific recommendations for management of patients, especially as these agents become available across many parts of the world. Here, we provide expert consensus clinical practice guidelines for the use of bispecific antibodies for the treatment of myeloma. The International Myeloma Working Group is also involved in the collection of prospective real-time data of patients treated with such immunotherapies, with the aim of learning continuously and adapting clinical practices to optimise the management of patients receiving immunotherapies.


Antibodies, Bispecific , Consensus , Multiple Myeloma , T-Lymphocytes , Humans , Antibodies, Bispecific/therapeutic use , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immunotherapy/methods , Immunotherapy/standards , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects
4.
BMC Geriatr ; 24(1): 411, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720296

BACKGROUND: Impaired immune response in multiple myeloma renders the patients vulnerable to infections, such as COVID-19, and may cause worse response to vaccines. Researchers should analyze this issue to enable the planning for special preventive measures, such as increased booster doses. Therefore, this meta-analysis aimed to evaluate the response and efficacy of COVID-19 vaccines in patients with multiple myeloma. METHODS: This meta-analysis followed PRISMA 2020 guidelines, conducting a comprehensive database search using specified keywords. Study selection involved a two-phase title/abstract and full-text screening process. Data extraction was performed by two researchers, and statistical analysis involved meta-analysis, subgroup analysis based on vaccine dosage and study time, random effects meta-regression, and heterogeneity testing using the Q test. RESULTS: The meta-analysis revealed that patients with multiple myeloma (MM) had a lower likelihood of developing detectable antibodies after COVID-19 vaccination compared to healthy controls (Log odds ratio with 95% CI: -3.34 [-4.08, -2.60]). The analysis of antibody response after different doses showed consistent lower seropositivity in MM patients (after first dose: -2.09, [-3.49, -0.69], second: -3.80, 95%CI [-4.71, -3.01], a booster dose: -3.03, [-5.91, -0.15]). However, there was no significant difference in the mean level of anti-S antibodies between MM patients and controls (Cohen's d -0.72, [-1.86, 0.43]). Evaluation of T-cell responses indicated diminished T-cell-mediated immunity in MM patients compared to controls. Seven studies reported clinical response, with breakthrough infections observed in vaccinated MM patients. CONCLUSIONS: These findings highlight the impaired humoral and cellular immune responses in MM patients after COVID-19 vaccination, suggesting the need for further investigation and potential interventions.


COVID-19 Vaccines , COVID-19 , Multiple Myeloma , Multiple Myeloma/immunology , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Vaccination/methods
5.
Cells ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38786075

Upfront high-dose therapy with melphalan (HDM) followed by autologous stem cell transplantation (ASCT) has established itself as a core treatment for newly diagnosed multiple myeloma (NDMM) patients in the past 30 years. Induction therapy, HDM-ASCT, and subsequent consolidation and maintenance therapy comprise the current fundamental framework for MM treatment. The introduction of anti-CD38 monoclonal antibodies such as daratumumab and isatuximab has changed the treatment paradigm for transplant-eligible NDMM patients in that quadruplets have become the new standard induction therapy. The treatment landscape of MM is undergoing a transformative shift with the introduction of potent new immunotherapies, such as chimeric antigen receptor (CAR)-T cells and bispecific antibodies (BsAbs), which are currently used in the relapsed/refractory setting (RRMM) and are already being tested in the NDMM. This review will focus on the incorporation of immunotherapy in the treatment scenario of NDMM patients eligible for ASCT.


Immunotherapy , Multiple Myeloma , Transplantation, Autologous , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Immunotherapy/methods , Hematopoietic Stem Cell Transplantation/methods
6.
Cells ; 13(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38786100

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


ADP-ribosyl Cyclase 1 , Multiple Myeloma , T-Lymphocytes , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/immunology , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , CD3 Complex/metabolism , CD28 Antigens/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Recurrence
7.
Sci Rep ; 14(1): 11593, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773213

Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-ß1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-ß1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-ß1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-ß1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.


B7-H1 Antigen , Histocompatibility Antigens Class I , Membrane Proteins , Multiple Myeloma , Nucleotidyltransferases , Signal Transduction , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1 , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Transforming Growth Factor beta1/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Animals , Down-Regulation , Mice , Female , Coculture Techniques , Male , Gene Expression Regulation, Neoplastic
8.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732213

Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable, and its incidence is rising. Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a novel treatment, with the potential to improve the survival and quality of life of patients with relapsed/refractory multiple myeloma (rrMM). In this systematic review and meta-analysis, conducted in accordance with PRISMA guidelines, we aim to provide a concise overview of the latest developments in CAR-T therapy, assess their potential implications for clinical practice, and evaluate their efficacy and safety outcomes based on the most up-to-date evidence. A literature search conducted from 1 January 2019 to 12 July 2023 on Medline/PubMed, Scopus, and Web of Science identified 2273 articles, of which 29 fulfilled the specified criteria for inclusion. Our results offer robust evidence supporting CAR-T cell therapy's efficacy in rrMM patients, with an encouraging 83.21% overall response rate (ORR). A generally safe profile was observed, with grade ≥ 3 cytokine release syndrome (CRS) at 7.12% and grade ≥ 3 neurotoxicity at 1.37%. A subgroup analysis revealed a significantly increased ORR in patients with fewer antimyeloma regimens, while grade ≥ 3 CRS was more common in those with a higher proportion of high-risk cytogenetics and prior exposure to BCMA therapy.


Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Treatment Outcome , Quality of Life , Neoplasm Recurrence, Local/therapy , Cytokine Release Syndrome/etiology
9.
JCI Insight ; 9(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38713510

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Disease Models, Animal , Interleukin-6 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Mice , Interleukin-6/metabolism , Mice, Transgenic , Bortezomib/pharmacology , Bortezomib/therapeutic use , Male , Female , Plasma Cells/immunology , Monoclonal Gammopathy of Undetermined Significance/immunology , Monoclonal Gammopathy of Undetermined Significance/pathology
10.
Front Immunol ; 15: 1358478, 2024.
Article En | MEDLINE | ID: mdl-38698840

Introduction: Cancer combination treatments involving immunotherapies with targeted radiation therapy are at the forefront of treating cancers. However, dosing and scheduling of these therapies pose a challenge. Mathematical models provide a unique way of optimizing these therapies. Methods: Using a preclinical model of multiple myeloma as an example, we demonstrate the capability of a mathematical model to combine these therapies to achieve maximum response, defined as delay in tumor growth. Data from mice studies with targeted radionuclide therapy (TRT) and chimeric antigen receptor (CAR)-T cell monotherapies and combinations with different intervals between them was used to calibrate mathematical model parameters. The dependence of progression-free survival (PFS), overall survival (OS), and the time to minimum tumor burden on dosing and scheduling was evaluated. Different dosing and scheduling schemes were evaluated to maximize the PFS and optimize timings of TRT and CAR-T cell therapies. Results: Therapy intervals that were too close or too far apart are shown to be detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy results in radiation related CAR-T cell killing while the therapies being too far apart result in tumor regrowth, negatively impacting tumor control and survival. We show that splitting a dose of TRT or CAR-T cells when administered in combination is advantageous only if the first therapy delivered can produce a significant benefit as a monotherapy. Discussion: Mathematical models are crucial tools for optimizing the delivery of cancer combination therapy regimens with application along the lines of achieving cure, maximizing survival or minimizing toxicity.


Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Immunotherapy, Adoptive/methods , Mice , Combined Modality Therapy/methods , Receptors, Chimeric Antigen/immunology , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/radiotherapy , Models, Theoretical , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/radiotherapy , Radioisotopes/therapeutic use , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
11.
J Nanobiotechnology ; 22(1): 279, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783333

BACKGROUND: BCMA-directed autologous chimeric antigen receptor T (CAR-T) cells have shown excellent clinical efficacy in relapsed or refractory multiple myeloma (RRMM), however, the current preparation process for autologous CAR-T cells is complicated and costly. Moreover, the upregulation of CD47 expression has been observed in multiple myeloma, and anti-CD47 antibodies have shown remarkable results in clinical trials. Therefore, we focus on the development of BCMA/CD47-directed universal CAR-T (UCAR-T) cells to improve these limitations. METHODS: In this study, we employed phage display technology to screen nanobodies against BCMA and CD47 protein, and determined the characterization of nanobodies. Furthermore, we simultaneously disrupted the endogenous TRAC and B2M genes of T cells using CRISPR/Cas9 system to generate TCR and HLA double knock-out T cells, and developed BCMA/CD47-directed UCAR-T cells and detected the antitumor activity in vitro and in vivo. RESULTS: We obtained fourteen and one specific nanobodies against BCMA and CD47 protein from the immunized VHH library, respectively. BCMA/CD47-directed UCAR-T cells exhibited superior CAR expression (89.13-98.03%), and effectively killing primary human MM cells and MM cell lines. BCMA/CD47-directed UCAR-T cells demonstrated excellent antitumor activity against MM and prolonged the survival of tumor-engrafted NCG mice in vivo. CONCLUSIONS: This work demonstrated that BCMA/CD47-directed UCAR-T cells exhibited potent antitumor activity against MM in vitro and in vivo, which provides a potential strategy for the development of a novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.


B-Cell Maturation Antigen , CD47 Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Humans , Animals , CD47 Antigen/immunology , B-Cell Maturation Antigen/immunology , Mice , Immunotherapy, Adoptive/methods , Cell Line, Tumor , Receptors, Chimeric Antigen/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , T-Lymphocytes/immunology , CRISPR-Cas Systems , Female
13.
Blood Adv ; 8(10): 2424-2432, 2024 May 28.
Article En | MEDLINE | ID: mdl-38564776

ABSTRACT: Newer immune-based approaches based on recruitment and redirection of endogenous and/or synthetic immunity such as chimeric antigen receptor T cells or bispecific antibodies are transforming the clinical management of multiple myeloma (MM). Contributions of the immune system to the antitumor effects of myeloma therapies are also increasingly appreciated. Clinical malignancy in MM originates in the setting of systemic immune alterations that begin early in myelomagenesis and regional changes in immunity affected by spatial contexture. Preexisting and therapy-induced changes in immune cells correlate with outcomes in patients with MM including after immune therapies. Here, we discuss insights from and limitations of available data about immune status and outcomes after immune therapies in patients with MM. Preexisting variation in systemic and/or regional immunity is emerging as a major determinant of the efficacy of current immune therapies as well as vaccines. However, MM is a multifocal malignancy. As with solid tumors, integrating spatial aspects of the tumor and consideration of immune targets with the biology of immune cells may be critical to optimizing the application of immune therapy, including T-cell redirection, in MM. We propose 5 distinct spatial immune types of MM that may provide an initial framework for the optimal application of specific immune therapies in MM: immune depleted, immune permissive, immune excluded, immune suppressed, and immune resistant. Such considerations may also help optimize rational patient selection for emerging immune therapies to improve outcomes.


Immunotherapy , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Immunotherapy/methods , Patient Selection
14.
Nat Immunol ; 25(5): 820-833, 2024 May.
Article En | MEDLINE | ID: mdl-38600356

Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.


B-Cell Activating Factor , Interleukin-1beta , Multiple Myeloma , Neutrophils , Stromal Cells , Tumor Microenvironment , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Tumor Microenvironment/immunology , Neutrophils/immunology , Neutrophils/metabolism , Stromal Cells/metabolism , Stromal Cells/immunology , B-Cell Activating Factor/metabolism , Interleukin-1beta/metabolism , Neutrophil Activation , STAT3 Transcription Factor/metabolism , Bone Marrow/immunology , Bone Marrow/pathology
16.
Cancer Med ; 13(8): e7048, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651177

BACKGROUND: Multiple myeloma (MM), an incurable disease characterized by frequent relapses and a need for multiple treatments, often progresses to a relapse/refractory status resistant to all available drugs and drug classes. Bispecific antibodies, specifically BCMA T-cell engagers, have emerged as effective treatments for MM, demonstrating impressive efficacy. However, these treatments can adversely affect the immune system, increasing vulnerability to infections. METHODS/RESULTS: This study evaluated the efficacy and safety of BCMA T-cell engagers in 58 Swedish patients with poor MM prognosis. The patients exhibited a 69% overall response rate, with 69% survival and 60% progression-free survival at 15 months. CONCLUSIONS: Despite the risk of infectious complications, the prognosis of MM patients can be significantly improved with vigilant monitoring and proactive management of infections. This real-world data highlight the potential of BCMA T-cell engagers in treating MM, emphasizing the need for careful patient monitoring to mitigate infection risks.


Antibodies, Bispecific , B-Cell Maturation Antigen , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Sweden/epidemiology , Male , B-Cell Maturation Antigen/antagonists & inhibitors , B-Cell Maturation Antigen/immunology , Middle Aged , Female , Aged , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/adverse effects , Aged, 80 and over , Adult , T-Lymphocytes/immunology , Treatment Outcome , Progression-Free Survival , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects
17.
Mol Genet Genomics ; 299(1): 47, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649532

Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan-Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and ß2-microglobulin with risk score could improve the accuracy of determining patients' prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and ß2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.


Bone Marrow , Gene Expression Profiling , Multiple Myeloma , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Humans , Female , Prognosis , Male , Gene Expression Profiling/methods , Bone Marrow/pathology , Bone Marrow/immunology , Middle Aged , Aged , Gene Expression Regulation, Neoplastic , beta 2-Microglobulin/genetics , Biomarkers, Tumor/genetics , Kaplan-Meier Estimate , ROC Curve , Transcriptome/genetics
18.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683232

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , T-Lymphocytes , Multiple Myeloma/therapy , Multiple Myeloma/immunology , B-Cell Maturation Antigen/immunology , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Cell Line, Tumor , T-Lymphocytes/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Animals
19.
Clin Cancer Res ; 30(10): 2085-2096, 2024 May 15.
Article En | MEDLINE | ID: mdl-38466644

PURPOSE: B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.


B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/antagonists & inhibitors , Male , Female , Middle Aged , Aged , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Adult , Biomarkers, Tumor , Receptors, Chimeric Antigen/immunology , Treatment Outcome
20.
Clin Pharmacol Ther ; 115(6): 1258-1268, 2024 Jun.
Article En | MEDLINE | ID: mdl-38459622

B-cell maturation antigen (BCMA)-targeting immunotherapies (e.g., chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAbs)) have achieved remarkable clinical responses in patients with relapsed and/or refractory multiple myeloma (RRMM). Their use is accompanied by exaggerated immune responses related to T-cell activation and cytokine elevations leading to cytokine release syndrome (CRS) in some patients, which can be potentially life-threatening. However, systematic evaluation of the risk of CRS with BCMA-targeting BsAb and CAR-T therapies, and comparisons across different routes of BsAb administration (intravenous (i.v.) vs. subcutaneous (s.c.)) have not previously been conducted. This study utilized a meta-analysis approach to compare the CRS profile in BCMA-targeting CAR-T vs. BsAb immunotherapies administered either i.v. or s.c. in patients with RRMM. A total of 36 studies including 1,560 patients with RRMM treated with BCMA-targeting CAR-T and BsAb therapies were included in the analysis. The current analysis suggests that compared with BsAbs, CAR-T therapies were associated with higher CRS incidences (88% vs. 59%), higher rates of grade ≥ 3 CRS (7% vs. 2%), longer CRS duration (5 vs. 2 days), and more prevalent tocilizumab use (44% vs. 25%). The proportion of CRS grade ≥ 3 may also be lower (0% vs. 4%) for BsAb therapies administered via the s.c. (3 studies, n = 311) vs. i.v. (5 studies, n = 338) route. This meta-analysis suggests that different types of BCMA-targeting immunotherapies and administration routes could result in a range of CRS incidence and severity that should be considered while evaluating the benefit-risk profiles of these therapies.


Antibodies, Bispecific , B-Cell Maturation Antigen , Cytokine Release Syndrome , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/adverse effects , B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Injections, Subcutaneous , Receptors, Chimeric Antigen/immunology , Administration, Intravenous
...