Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.153
1.
Chest ; 165(5): e133-e136, 2024 May.
Article En | MEDLINE | ID: mdl-38724151

We describe the case of a young 33-year-old woman that was referred to our clinic for evidence of migrant cavitary nodules at CT scan, dyspnea, and blood sputum. Her physical examination showed translucent and thin skin, evident venous vascular pattern, vermilion of the lip thin, micrognathia, thin nose, and occasional Raynaud phenomenon. We prescribed another CT scan that showed multiple pulmonary nodules in both lungs, some of which had evidence of cavitation. Because bronchoscopy was not diagnostic, we decided to perform surgical lung biopsy. At histologic examination, we found the presence of irregularly shaped, but mainly not dendritic, foci of ossification that often contained bone marrow and were embedded or surrounded by tendinous-like fibrous tissue. After incorporating data from the histologic examination, we decided to perform genetic counseling and genetic testing with the use of whole-exome sequencing. The genetic test revealed a heterozygous de novo missense mutation of COL3A1 gene, which encodes for type III collagen synthesis, and could cause vascular Ehlers-Danlos syndrome.


Collagen Type III , Hemoptysis , Tomography, X-Ray Computed , Humans , Female , Adult , Hemoptysis/etiology , Hemoptysis/diagnosis , Collagen Type III/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/genetics , Diagnosis, Differential , Mutation, Missense , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology
2.
Cancer Imaging ; 24(1): 60, 2024 May 09.
Article En | MEDLINE | ID: mdl-38720391

BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS: A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS: Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION: We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.


Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Radiographic Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
3.
PLoS One ; 19(5): e0302641, 2024.
Article En | MEDLINE | ID: mdl-38753596

The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. However, lung nodules can be difficult to detect and classify, from CT images since different imaging modalities may provide varying levels of detail and clarity. Besides, the existing convolutional neural network may struggle to detect nodules that are small or located in difficult-to-detect regions of the lung. Therefore, the attention pyramid pooling network (APPN) is proposed to identify and classify lung nodules. First, a strong feature extractor, named vgg16, is used to obtain features from CT images. Then, the attention primary pyramid module is proposed by combining the attention mechanism and pyramid pooling module, which allows for the fusion of features at different scales and focuses on the most important features for nodule classification. Finally, we use the gated spatial memory technique to decode the general features, which is able to extract more accurate features for classifying lung nodules. The experimental results on the LIDC-IDRI dataset show that the APPN can achieve highly accurate and effective for classifying lung nodules, with sensitivity of 87.59%, specificity of 90.46%, accuracy of 88.47%, positive predictive value of 95.41%, negative predictive value of 76.29% and area under receiver operating characteristic curve of 0.914.


Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Tomography, X-Ray Computed/methods , Deep Learning , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Algorithms , Lung/diagnostic imaging , Lung/pathology , Radiographic Image Interpretation, Computer-Assisted/methods
4.
Clin Respir J ; 18(5): e13769, 2024 May.
Article En | MEDLINE | ID: mdl-38736274

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. This study aimed to establish novel multiclassification prediction models based on machine learning (ML) to predict the probability of malignancy in pulmonary nodules (PNs) and to compare with three published models. METHODS: Nine hundred fourteen patients with PNs were collected from four medical institutions (A, B, C and D), which were organized into tables containing clinical features, radiologic features and laboratory test features. Patients were divided into benign lesion (BL), precursor lesion (PL) and malignant lesion (ML) groups according to pathological diagnosis. Approximately 80% of patients in A (total/male: 632/269, age: 57.73 ± 11.06) were randomly selected as a training set; the remaining 20% were used as an internal test set; and the patients in B (total/male: 94/53, age: 60.04 ± 11.22), C (total/male: 94/47, age: 59.30 ± 9.86) and D (total/male: 94/61, age: 62.0 ± 11.09) were used as an external validation set. Logical regression (LR), decision tree (DT), random forest (RF) and support vector machine (SVM) were used to establish prediction models. Finally, the Mayo model, Peking University People's Hospital (PKUPH) model and Brock model were externally validated in our patients. RESULTS: The AUC values of RF model for MLs, PLs and BLs were 0.80 (95% CI: 0.73-0.88), 0.90 (95% CI: 0.82-0.99) and 0.75 (95% CI: 0.67-0.88), respectively. The weighted average AUC value of the RF model for the external validation set was 0.71 (95% CI: 0.67-0.73), and its AUC values for MLs, PLs and BLs were 0.71 (95% CI: 0.68-0.79), 0.98 (95% CI: 0.88-1.07) and 0.68 (95% CI: 0.61-0.74), respectively. The AUC values of the Mayo model, PKUPH model and Brock model were 0.68 (95% CI: 0.62-0.74), 0.64 (95% CI: 0.58-0.70) and 0.57 (95% CI: 0.49-0.65), respectively. CONCLUSIONS: The RF model performed best, and its predictive performance was better than that of the three published models, which may provide a new noninvasive method for the risk assessment of PNs.


Lung Neoplasms , Machine Learning , Multiple Pulmonary Nodules , Aged , Female , Humans , Male , Middle Aged , Decision Trees , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Predictive Value of Tests , Retrospective Studies , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Support Vector Machine , Tomography, X-Ray Computed/methods
5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 169-175, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38686712

Objective To establish a model for predicting the growth of pulmonary ground-glass nodules (GGN) based on the clinical visualization parameters extracted by the 3D reconstruction technique and to verify the prediction performance of the model. Methods A retrospective analysis was carried out for 354 cases of pulmonary GGN followed up regularly in the outpatient of pulmonary nodules in Zhoushan Hospital of Zhejiang Province from March 2015 to December 2022.The semi-automatic segmentation method of 3D Slicer was employed to extract the quantitative imaging features of nodules.According to the follow-up results,the nodules were classified into a resting group and a growing group.Furthermore,the nodules were classified into a training set and a test set by the simple random method at a ratio of 7∶3.Clinical and imaging parameters were used to establish a prediction model,and the prediction performance of the model was tested on the validation set. Results A total of 119 males and 235 females were included,with a median age of 55.0 (47.0,63.0) years and the mean follow-up of (48.4±16.3) months.There were 247 cases in the training set and 107 cases in the test set.The binary Logistic regression analysis showed that age (95%CI=1.010-1.092,P=0.015) and mass (95%CI=1.002-1.067,P=0.035) were independent predictors of nodular growth.The mass (M) of nodules was calculated according to the formula M=V×(CTmean+1000)×0.001 (where V is the volume,V=3/4πR3,R:radius).Therefore,the logit prediction model was established as ln[P/(1-P)]=-1.300+0.043×age+0.257×two-dimensional diameter+0.007×CTmean.The Hosmer-Lemeshow goodness of fit test was performed to test the fitting degree of the model for the measured data in the validation set (χ2=4.515,P=0.808).The check plot was established for the prediction model,which showed the area under receiver-operating characteristic curve being 0.702. Conclusions The results of this study indicate that patient age and nodule mass are independent risk factors for promoting the growth of pulmonary GGN.A model for predicting the growth possibility of GGN is established and evaluated,which provides a basis for the formulation of GGN management strategies.


Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Middle Aged , Female , Male , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Imaging, Three-Dimensional/methods , Aged , Adult
6.
Biomed Phys Eng Express ; 10(4)2024 May 08.
Article En | MEDLINE | ID: mdl-38684143

Objectives. Current lung cancer screening protocols primarily evaluate pulmonary nodules, yet often neglect the malignancy risk associated with small nodules (≤10 mm). This study endeavors to optimize the management of pulmonary nodules in this population by devising and externally validating a Multimodal Integrated Feature Neural Network (MIFNN). We hypothesize that the fusion of deep learning algorithms with morphological nodule features will significantly enhance diagnostic accuracy.Materials and Methods. Data were retrospectively collected from the Lung Nodule Analysis 2016 (LUNA16) dataset and four local centers in Beijing, China. The study includes patients with small pulmonary nodules (≤10 mm). We developed a neural network, termed MIFNN, that synergistically combines computed tomography (CT) images and morphological characteristics of pulmonary nodules. The network is designed to acquire clinically relevant deep learning features, thereby elevating the diagnostic accuracy of existing models. Importantly, the network's simple architecture and use of standard screening variables enable seamless integration into standard lung cancer screening protocols.Results. In summary, the study analyzed a total of 382 small pulmonary nodules (85 malignant) from the LUNA16 dataset and 101 small pulmonary nodules (33 malignant) obtained from four specialized centers in Beijing, China, for model training and external validation. Both internal and external validation metrics indicate that the MIFNN significantly surpasses extant state-of-the-art models, achieving an internal area under the curve (AUC) of 0.890 (95% CI: 0.848-0.932) and an external AUC of 0.843 (95% CI: 0.784-0.891).Conclusion. The MIFNN model significantly enhances the diagnostic accuracy of small pulmonary nodules, outperforming existing benchmarks by Zhanget alwith a 6.34% improvement for nodules less than 10 mm. Leveraging advanced integration techniques for imaging and clinical data, MIFNN increases the efficiency of lung cancer screenings and optimizes nodule management, potentially reducing false positives and unnecessary biopsies.Clinical relevance statement. The MIFNN enhances lung cancer screening efficiency and patient management for small pulmonary nodules, while seamlessly integrating into existing workflows due to its reliance on standard screening variables.


Algorithms , Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Retrospective Studies , Male , Deep Learning , Female , Solitary Pulmonary Nodule/diagnostic imaging , Middle Aged , Reproducibility of Results , Aged , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Early Detection of Cancer/methods , China
8.
Rev Mal Respir ; 41(5): 390-398, 2024 May.
Article Fr | MEDLINE | ID: mdl-38580585

The management of peripheral lung nodules is challenging, requiring specialized skills and sophisticated technologies. The diagnosis now appears accessible to advanced endoscopy (see Part 1), which can also guide treatment of these nodules; this second part provides an overview of endoscopy techniques that can enhance surgical treatment through preoperative marking, and stereotactic radiotherapy treatment through fiduciary marker placement. Finally, we will discuss how, in the near future, these advanced endoscopic techniques will help to implement ablation strategy.


Endoscopy , Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/therapy , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Endoscopy/methods , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/therapy , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Bronchoscopy/methods , Radiosurgery/methods
9.
Biomater Sci ; 12(11): 2943-2950, 2024 May 28.
Article En | MEDLINE | ID: mdl-38651530

The widespread use of video-assisted thoracoscopic surgery (VATS) has triggered the rapid expansion in the field of computed tomography (CT)-guided preoperative localization and near-infrared (NIR) fluorescence image-guided surgery. However, its broader application has been hindered by the absence of ideal imaging contrasts that are biocompatible, minimally invasive, highly resolvable, and perfectly localized within the diseased tissue. To achieve this goal, we synthesize a dextran-based fluorescent and iodinated hydrogel, which can be injected into the tissue and imaged with both CT and NIR fluorescence modalities. By finely tuning the physical parameters such as gelation time and composition of iodinated oil (X-ray contrast agent) and indocyanine green (ICG, NIR fluorescence dye), we optimize the hydrogel for prolonged localization at the injected site without losing the dual-imaging capability. We validate the effectiveness of the developed injectable dual-imaging platform by performing image-guided resection of pulmonary nodules on tumor-bearing rabbits, which are preoperatively localized with the hydrogel. The injectable dual-imaging marker, therefore, can emerge as a powerful tool for surgical guidance.


Fluorescent Dyes , Hydrogels , Indocyanine Green , Hydrogels/chemistry , Hydrogels/administration & dosage , Animals , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Rabbits , Fluorescent Dyes/chemistry , Fluorescent Dyes/administration & dosage , Surgery, Computer-Assisted , Optical Imaging , Tomography, X-Ray Computed , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Dextrans/chemistry , Dextrans/administration & dosage , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Injections , Humans
12.
Cancer Imaging ; 24(1): 47, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566150

PURPOSE: To investigate the computed tomography (CT) characteristics of air-containing space and its specific patterns in neoplastic and non-neoplastic ground glass nodules (GGNs) for clarifying their significance in differential diagnosis. MATERIALS AND METHODS: From January 2015 to October 2022, 1328 patients with 1,350 neoplastic GGNs and 462 patients with 465 non-neoplastic GGNs were retrospectively enrolled. Their clinical and CT data were analyzed and compared with emphasis on revealing the differences of air-containing space and its specific patterns (air bronchogram and bubble-like lucency [BLL]) between neoplastic and non-neoplastic GGNs and their significance in differentiating them. RESULTS: Compared with patients with non-neoplastic GGNs, female was more common (P < 0.001) and lesions were larger (P < 0.001) in those with neoplastic ones. Air bronchogram (30.1% vs. 17.2%), and BLL (13.0% vs. 2.6%) were all more frequent in neoplastic GGNs than in non-neoplastic ones (each P < 0.001), and the BLL had the highest specificity (93.6%) in differentiation. Among neoplastic GGNs, the BLL was more frequently detected in the larger (14.9 ± 6.0 mm vs. 11.4 ± 4.9 mm, P < 0.001) and part-solid (15.3% vs. 10.7%, P = 0.011) ones, and its incidence significantly increased along with the invasiveness (9.5-18.0%, P = 0.001), whereas no significant correlation was observed between the occurrence of BLL and lesion size, attenuation, or invasiveness. CONCLUSION: The air containing space and its specific patterns are of great value in differentiating GGNs, while BLL is a more specific and independent sign of neoplasms.


Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Female , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Tomography, X-Ray Computed/methods , Diagnosis, Differential
13.
J Cardiothorac Surg ; 19(1): 182, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581004

PURPOSE: In VATS surgery, precise preoperative localization is particularly crucial when dealing with small-diameter pulmonary nodules located deep within the lung parenchyma. The purpose of this study was to compare the efficacy and safety of laser guidance and freehand hook-wire for CT-guided preoperative localization of pulmonary nodules. METHODS: This retrospective study was conducted on 164 patients who received either laser guidance or freehand hook-wire localization prior to Uni-port VATS from September 1st, 2022 to September 30th, 2023 at The First Affiliated Hospital of Soochow University. Patients were divided into laser guidance group and freehand group based on which technology was used. Preoperative localization data from all patients were compiled. The localization success and complication rates associated with the two groups were compared. The risk factors for common complications were analyzed. RESULTS: The average time of the localization duration in the laser guidance group was shorter than the freehand group (p<0.001), and the average CT scan times in the laser guidance group was less than that in the freehand group (p<0.001). The hook-wire was closer to the nodule in the laser guidance group (p<0.001). After the localization of pulmonary nodules, a CT scan showed 14 cases of minor pneumothorax (22.58%) in the laser guidance group and 21 cases (20.59%) in the freehand group, indicating no statistical difference between the two groups (p=0.763). CT scans in the laser guidance group showed pulmonary minor hemorrhage in 8 cases (12.90%) and 6 cases (5.88%) in the freehand group, indicating no statistically significant difference between the two groups (p=0.119). Three patients (4.84%) in the laser guidance group and six patients (5.88%) in the freehand group had hook-wire dislodgement, showing no statistical difference between the two groups (p=0.776). CONCLUSION: The laser guidance localization method possessed a greater precision and less localization duration and CT scan times compared to the freehand method. However, laser guidance group and freehand group do not differ in the appearance of complications such as pulmonary hemorrhage, pneumothorax and hook-wire dislodgement.


Lung Neoplasms , Multiple Pulmonary Nodules , Pneumothorax , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Pneumothorax/surgery , Retrospective Studies , Solitary Pulmonary Nodule/surgery , Thoracic Surgery, Video-Assisted/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Tomography, X-Ray Computed/methods , Hemorrhage
14.
Eur J Surg Oncol ; 50(6): 108305, 2024 Jun.
Article En | MEDLINE | ID: mdl-38552417

INTRODUCTION: Multidisciplinary teams treating patients with newly diagnosed Colorectal Cancer (CRC) often encounter the appearance of Indeterminate Pulmonary Nodules (IPNs) that warrants follow-up with repetitive medical imaging and anxiety for patients. We determined the incidence of IPNs in patients with newly diagnosed CRC and developed and validated a model for individualized risk prediction of IPNs being lung metastases. MATERIAL AND METHODS: Newly diagnosed CRC who underwent surgery between November 2011 to June 2014 were included to create the risk model, developed using both clinical experience and statistical selection. Discrimination and calibration slopes of the risk score were evaluated in an independent temporal validation sample. A nomogram is presented to assist clinicians in estimating an individual risk score. RESULTS: Out of 2111 CRC patients staged with chest CT, 204 (9.6%) had IPNs and 54/204 (26%) had lung metastases. We identified 4 predictors: "location of primary tumour", "pathological nodal stage", "size of the largest nodule" and "extrapulmonary synchronous metastases at diagnosis". Discrimination of the final model in the validation sample was demonstrated by the difference in mean predicted risk between progressed cases en non-progressed cases (49% versus 21%, p = <0.001). CONCLUSION: A prediction model with 4 clinical risk factors can be used to assist multidisciplinary teams in the prediction of individualized risk of lung metastases and imaging strategy in patients with IPNs and newly diagnosed colorectal cancer. The model performed well in new patients not included in the model development.


Colorectal Neoplasms , Lung Neoplasms , Multiple Pulmonary Nodules , Nomograms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Male , Colorectal Neoplasms/pathology , Female , Middle Aged , Aged , Multiple Pulmonary Nodules/secondary , Multiple Pulmonary Nodules/diagnostic imaging , Risk Assessment , Tomography, X-Ray Computed , Neoplasm Staging , Adult , Retrospective Studies , Solitary Pulmonary Nodule/secondary , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Aged, 80 and over
15.
Respiration ; 103(5): 280-288, 2024.
Article En | MEDLINE | ID: mdl-38471496

INTRODUCTION: Lung cancer remains the leading cause of cancer death worldwide. Subsolid nodules (SSN), including ground-glass nodules (GGNs) and part-solid nodules (PSNs), are slow-growing but have a higher risk for malignancy. Therefore, timely diagnosis is imperative. Shape-sensing robotic-assisted bronchoscopy (ssRAB) has emerged as reliable diagnostic procedure, but data on SSN and how ssRAB compares to other diagnostic interventions such as CT-guided transthoracic biopsy (CTTB) are scarce. In this study, we compared diagnostic yield of ssRAB versus CTTB for evaluating SSN. METHODS: A retrospective study of consecutive patients who underwent either ssRAB or CTTB for evaluating GGN and PSN with a solid component less than 6 mm from February 2020 to April 2023 at Mayo Clinic Florida and Rochester. Clinicodemographic information, nodule characteristics, diagnostic yield, and complications were compared between ssRAB and CTTB. RESULTS: A total of 66 nodules from 65 patients were evaluated: 37 PSN and 29 GGN. Median size of PSN solid component was 5 mm (IQR: 4.5, 6). Patients were divided into two groups: 27 in the ssRAB group and 38 in the CTTB group. Diagnostic yield was 85.7% for ssRAB and 89.5% for CTTB (p = 0.646). Sensitivity for malignancy was similar between ssRAB and CTTB (86.4% vs. 88.5%; p = 0.828), with no statistical difference. Complications were more frequent in CTTB with no significant difference (8 vs. 2; p = 0.135). CONCLUSION: Diagnostic yield for SSN was similarly high for ssRAB and CTTB, with ssRAB presenting less complications and allowing mediastinal staging within the same procedure.


Bronchoscopy , Image-Guided Biopsy , Lung Neoplasms , Multiple Pulmonary Nodules , Robotic Surgical Procedures , Tomography, X-Ray Computed , Humans , Female , Male , Retrospective Studies , Middle Aged , Bronchoscopy/methods , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Image-Guided Biopsy/methods , Robotic Surgical Procedures/methods , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis
16.
J Cardiothorac Surg ; 19(1): 148, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509607

BACKGROUND: Several studies to date have reported on the development of positron emission tomography (PET)/computed tomography (CT)-based models intended to effectively distinguish between benign and malignant pulmonary nodules (PNs). This meta-analysis was designed with the goal of clarifying the utility of these PET/CT-based conventional parameter models as diagnostic tools in the context of the differential diagnosis of PNs. METHODS: Relevant studies published through September 2023 were identified by searching the Web of Science, PubMed, and Wanfang databases, after which Stata v 12.0 was used to conduct pooled analyses of the resultant data. RESULTS: This meta-analysis included a total of 13 retrospective studies that analyzed 1,731 and 693 malignant and benign PNs, respectively. The respective pooled sensitivity, specificity, PLR, and NLR values for the PET/CT-based studies developed in these models were 88% (95%CI: 0.86-0.91), 78% (95%CI: 0.71-0.85), 4.10 (95%CI: 2.98-5.64), and 0.15 (95%CI: 0.12-0.19). Of these endpoints, the pooled analyses of model sensitivity (I2 = 69.25%), specificity (I2 = 78.44%), PLR (I2 = 71.42%), and NLR (I2 = 67.18%) were all subject to significant heterogeneity. The overall area under the curve value (AUC) value for these models was 0.91 (95%CI: 0.88-0.93). When differential diagnosis was instead performed based on PET results only, the corresponding pooled sensitivity, specificity, PLR, and NLR values were 92% (95%CI: 0.85-0.96), 51% (95%CI: 0.37-0.66), 1.89 (95%CI: 1.36-2.62), and 0.16 (95%CI: 0.07-0.35), with all four being subject to significant heterogeneity (I2 = 88.08%, 82.63%, 80.19%, and 86.38%). The AUC for these pooled analyses was 0.82 (95%CI: 0.79-0.85). CONCLUSIONS: These results suggest that PET/CT-based models may offer diagnostic performance superior to that of PET results alone when distinguishing between benign and malignant PNs.


Multiple Pulmonary Nodules , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Retrospective Studies , Sensitivity and Specificity , Multiple Pulmonary Nodules/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals
18.
World J Surg Oncol ; 22(1): 51, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38336734

BACKGROUND: Presurgical computed tomography (CT)-guided localization is frequently employed to reduce the thoracotomy conversion rate, while increasing the rate of successful sublobar resection of ground glass nodules (GGNs) via video-assisted thoracoscopic surgery (VATS). In this study, we compared the clinical efficacies of presurgical CT-guided hook-wire and indocyanine green (IG)-based localization of GGNs. METHODS: Between January 2018 and December 2021, we recruited 86 patients who underwent CT-guided hook-wire or IG-based GGN localization before VATS resection in our hospital, and compared the clinical efficiency and safety of both techniques. RESULTS: A total of 38 patients with 39 GGNs were included in the hook-wire group, whereas 48 patients with 50 GGNs were included in the IG group. There were no significant disparities in the baseline data between the two groups of patients. According to our investigation, the technical success rates of CT-based hook-wire- and IG-based localization procedures were 97.4% and 100%, respectively (P = 1.000). Moreover, the significantly longer localization duration (15.3 ± 6.3 min vs. 11.2 ± 5.3 min, P = 0.002) and higher visual analog scale (4.5 ± 0.6 vs. 3.0 ± 0.5, P = 0.001) were observed in the hook-wire patients, than in the IG patients. Occurrence of pneumothorax was significantly higher in hook-wire patients (27.3% vs. 6.3%, P = 0.048). Lung hemorrhage seemed higher in hook-wire patients (28.9% vs. 12.5%, P = 0.057) but did not reach statistical significance. Lastly, the technical success rates of VATS sublobar resection were 97.4% and 100% in hook-wire and IG patients, respectively (P = 1.000). CONCLUSIONS: Both hook-wire- and IG-based localization methods can effectively identified GGNs before VATS resection. Furthermore, IG-based localization resulted in fewer complications, lower pain scores, and a shorter duration of localization.


Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Indocyanine Green , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Retrospective Studies , Tomography, X-Ray Computed/methods , Thoracic Surgery, Video-Assisted/methods , Lung , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery
19.
Innovations (Phila) ; 19(2): 136-142, 2024.
Article En | MEDLINE | ID: mdl-38352995

OBJECTIVE: As lung cancer screening increases, the detection of small, nonpalpable lung lesions is on the rise. The hybrid operation room (OR), which combines percutaneous or endobronchial fiducial placement with on-table computed tomography (CT) and fluoroscopic guidance, improves localization and facilitates the diagnosis and treatment of smaller, nonpalpable lung nodules with greater accuracy. METHODS: In 35 consecutive months, 55 veterans underwent 60 image-guided video-assisted thoracic surgery procedures for lesion resection. Of the cases, 36% were found during lung cancer screening. All patients received their care in the hybrid OR, where cone-beam CT scan technology was used to place an average of 1.6 fiducials percutaneously (n = 55) or via augmented navigational bronchoscopy (n = 5). RESULTS: A total of 66 lesions were resected. The median lesion size was 8 mm with an interquartile range of 6 to 14. The patients underwent nonanatomical resection with lymph node dissection using radiologic guidance. When indicated, an anatomical resection was subsequently performed. Of 47 total non-small cell lung cancer lesions, 83% were diagnosed at stage IA1 or IA2. The median surgical margin was 15 mm; the margin was usually 1.5 times as wide as the lesion. CONCLUSIONS: The hybrid OR technology gives a 3-dimensional assessment of the small lung lesions, allowing for a tissue-saving resection while achieving good surgical margins. During lung cancer screening, smaller, nonpalpable lung nodules are frequently found. This technology allows resection of subcentimeter lesions, which would otherwise be unresectable at this early stage, possibly improving survival.


Lung Neoplasms , Thoracic Surgery, Video-Assisted , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Thoracic Surgery, Video-Assisted/methods , Male , Aged , Middle Aged , Female , Bronchoscopy/methods , Operating Rooms , Early Detection of Cancer/methods , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Tomography, X-Ray Computed/methods , Cone-Beam Computed Tomography/methods , Fluoroscopy/methods , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Surgery, Computer-Assisted/methods
20.
Cancer Imaging ; 24(1): 15, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38254185

BACKGROUND: To compare the diagnostic performance of Lung-RADS (lung imaging-reporting and data system) 2022 and PNI-GARS (pulmonary node imaging-grading and reporting system). METHODS: Pulmonary nodules (PNs) were selected at four centers, namely, CQ Center (January 1, 2018-December 31, 2021), HB Center (January 1, 2021-June 30, 2022), SC Center (September 1, 2021-December 31, 2021), and SX Center (January 1, 2021-December 31, 2021). PNs were divided into solid nodules (SNs), partial solid nodules (PSNs) and ground-glass nodules (GGNs), and they were then classified by the Lung-RADS and PNI-GARS. The sensitivity, specificity and agreement rate were compared between the two systems by the χ2 test. RESULTS: For SN and PSN, the sensitivity of PNI-GARS and Lung-RADS was close (SN 99.8% vs. 99.4%, P < 0.001; PSN 99.9% vs. 98.4%, P = 0.015), but the specificity (SN 51.2% > 35.1%, PSN 13.3% > 5.7%, all P < 0.001) and agreement rate (SN 81.1% > 74.5%, P < 0.001, PSN 94.6% > 92.7%, all P < 0.05) of PNI-GARS were superior to those of Lung-RADS. For GGN, the sensitivity (96.5%) and agreement rate (88.6%) of PNI-GARS were better than those of Lung-RADS (0, 18.5%, P < 0.001). For the whole sample, the sensitivity (98.5%) and agreement rate (87.0%) of PNI-GARS were better than Lung-RADS (57.5%, 56.5%, all P < 0.001), whereas the specificity was slightly lower (49.8% < 53.4%, P = 0.003). CONCLUSION: PNI-GARS was superior to Lung-RADS in diagnostic performance, especially for GGN.


Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed , Multiple Pulmonary Nodules/diagnostic imaging , China
...