Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
J Cachexia Sarcopenia Muscle ; 13(6): 2616-2629, 2022 12.
Article En | MEDLINE | ID: mdl-36104842

Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.


Muscle Strength , Muscular Disorders, Atrophic , Humans , Muscle Strength/physiology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Quadriceps Muscle , Muscle, Skeletal/pathology , Lower Extremity , Muscular Disorders, Atrophic/etiology
2.
Physiol Rep ; 9(14): e14979, 2021 07.
Article En | MEDLINE | ID: mdl-34309237

Sepsis induces a myopathy characterized by loss of muscle mass and weakness. Septic patients undergo prolonged periods of limb muscle disuse due to bed rest. The contribution of limb muscle disuse to the myopathy phenotype remains poorly described. To characterize sepsis-induced myopathy with hindlimb disuse, we combined the classic sepsis model via cecal ligation and puncture (CLP) with the disuse model of hindlimb suspension (HLS) in mice. Male C57bl/6j mice underwent CLP or SHAM surgeries. Four days after surgeries, mice underwent HLS or normal ambulation (NA) for 7 days. Soleus (SOL) and extensor digitorum longus (EDL) were dissected for in vitro muscle mechanics, morphological, and histological assessments. In SOL muscles, both CLP+NA and SHAM+HLS conditions elicited ~20% reduction in specific force (p < 0.05). When combined, CLP+HLS elicited ~35% decrease in specific force (p < 0.05). Loss of maximal specific force (~8%) was evident in EDL muscles only in CLP+HLS mice (p < 0.05). CLP+HLS reduced muscle fiber cross-sectional area (CSA) and mass in SOL (p < 0.05). In EDL muscles, CLP+HLS decreased absolute mass to a smaller extent (p < 0.05) with no changes in CSA. Immunohistochemistry revealed substantial myeloid cell infiltration (CD68+) in SOL, but not in EDL muscles, of CLP+HLS mice (p < 0.05). Combining CLP with HLS is a feasible model to study sepsis-induced myopathy in mice. Hindlimb disuse combined with sepsis induced muscle dysfunction and immune cell infiltration in a muscle dependent manner. These findings highlight the importance of rehabilitative interventions in septic hosts to prevent muscle disuse and help attenuate the myopathy.


Hindlimb Suspension/adverse effects , Muscle, Skeletal/physiopathology , Muscular Disorders, Atrophic/physiopathology , Sepsis/physiopathology , Animals , Hindlimb/pathology , Hindlimb Suspension/methods , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscular Diseases/etiology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/pathology , Sepsis/complications , Sepsis/pathology
3.
J Cachexia Sarcopenia Muscle ; 12(3): 717-730, 2021 06.
Article En | MEDLINE | ID: mdl-33675163

BACKGROUND: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.


Muscular Atrophy , Muscular Disorders, Atrophic , Animals , Female , Hindlimb Suspension , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Muscular Disorders, Atrophic/etiology , Sex Factors
4.
Clin Transl Sci ; 14(4): 1512-1523, 2021 07.
Article En | MEDLINE | ID: mdl-33742769

Mechanical ventilation (MV) is a life-saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator-induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin-angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1-7 (Ang1-7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1-7 protects the diaphragm against MV-induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1-7 shielded diaphragm fibers against MV-induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1-7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1-7 has the therapeutic potential to protect against VIDD by preventing MV-induced contractile dysfunction and atrophy of both slow and fast muscle fibers.


Angiotensin I/administration & dosage , Diaphragm/drug effects , Muscle Weakness/prevention & control , Muscular Disorders, Atrophic/prevention & control , Peptide Fragments/administration & dosage , Respiration, Artificial/adverse effects , Animals , Diaphragm/physiopathology , Disease Models, Animal , Female , Humans , Infusions, Intravenous , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Weakness/etiology , Muscle Weakness/physiopathology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/physiopathology , Oxidative Stress/drug effects , Rats
5.
Neurol Res ; 43(5): 372-380, 2021 May.
Article En | MEDLINE | ID: mdl-33372862

Objective: In addition to the split hand sign, other split phenomena of different muscles also exist in amyotrophic lateral sclerosis (ALS). We analyzed the incidence of split phenomena in multiple antagonistic muscle groups in ALS patients and explored whether clinical factors affected their occurrence.Methods: 618 ALS patients were included from a single ALS center. Muscle strength in upper and lower limbs was evaluated using the modified Medical Research Council (MRC) scoring system (range from 1 to 13). Split phenomena between different antagonistic muscle groups were summarized, and the correlations with clinical factors were analyzed.Results: Split phenomena were detected in 22.3% antagonistic muscles for flexion and extension of the elbow, 11.9% for the wrist, 23.9% for fingers, 18.2% for the ankle, and 14.7% for toes. These manifestations were characterized by preferential wasting of the elbow, wrist, and finger extensor muscles compared with the flexor muscles, and the ankle and toe dorsiflexor muscles compared with the plantar flexor muscles. The presence of muscle wasting was more common when the muscle strength was stronger than a modified MRC grade 6. No definite correlation was found between split phenomena and clinical factors, including age-at-onset, gender, disease duration, the region of onset, and pyramidal tract damage.Discussion: Split phenomena of antagonistic muscle groups widely exist in ALS patients. No definitive and consistent clinical factors were observed that affected the occurrence of these phenomena.


Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/physiopathology , Muscle Strength , Muscle Weakness/physiopathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/physiopathology , Muscular Disorders, Atrophic/physiopathology , Adult , Female , Humans , Lower Extremity/physiopathology , Male , Middle Aged , Muscle Weakness/etiology , Muscular Atrophy/etiology , Muscular Disorders, Atrophic/etiology , Upper Extremity/physiopathology
6.
PLoS One ; 15(4): e0231306, 2020.
Article En | MEDLINE | ID: mdl-32271840

OBJECTIVE: To determine if a commercial myostatin reducer (Fortetropin®) would inhibit disuse muscle atrophy in dogs after a tibial plateau leveling osteotomy. DESIGN: A prospective randomized, double-blinded, placebo-controlled clinical trial. ANIMALS: One hundred client-owned dogs presenting for surgical correction of cranial cruciate ligament rupture by tibial plateau leveling osteotomy. PROCEDURES: Patients were randomly assigned into the Fortetropin® or placebo group and clients were instructed to add the assigned supplement to the dog's normal diet once daily for twelve weeks. Enrolled patients had ultrasound measurements of muscle thickness, tape measure measurements of thigh circumference, serum myostatin level assays, and static stance analysis evaluated at weeks 0, 8, and 12. RESULTS: From week 0 to week 8, there was no change for thigh circumference in the Fortetropin® group for the affected limb (-0.54cm, P = 0.31), but a significant decrease in thigh circumference for the placebo group (-1.21cm, P = 0.03). There was no significant change in serum myostatin levels of dogs in the Fortetropin® group at any time point (P>0.05), while there was a significant rise of serum myostatin levels of dogs in placebo group during the period of forced exercise restriction (week 0 to week 8; +2,892 pg/ml, P = 0.02). The percent of body weight supported by the affected limb increased in dogs treated with Fortetropin® (+7.0%, P<0.01) and the placebo group (+4.9%, P<0.01) at the end of the period of forced exercise restriction. The difference in weight bearing between the Fortetropin® and placebo groups was not statistically significant (P = 0.10). CONCLUSION: Dogs receiving Fortetropin® had a similar increase in stance force on the affected limb, no significant increase in serum myostatin levels, and no significant reduction in thigh circumference at the end of the period of forced exercise restriction compared to the placebo. These findings support the feeding of Fortetropin® to prevent disuse muscle atrophy in canine patients undergoing a tibial plateau leveling osteotomy.


Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/veterinary , Dietary Supplements , Muscular Disorders, Atrophic/diet therapy , Muscular Disorders, Atrophic/etiology , Myostatin/antagonists & inhibitors , Osteotomy , Proteolipids/administration & dosage , Animals , Anterior Cruciate Ligament Injuries/surgery , Dogs , Muscular Disorders, Atrophic/veterinary , Placebos , Proteolipids/pharmacology , Tibia/surgery
7.
Anticancer Res ; 40(4): 2275-2281, 2020 Apr.
Article En | MEDLINE | ID: mdl-32234926

BACKGROUND/AIM: To assess the prognostic effect of muscle loss after esophagectomy and before discharge. PATIENTS AND METHODS: This study retrospectively analysed 159 consecutive patients with oesophageal and gastroesophageal junction cancer who underwent esophagectomy between August 2011 and October 2015. Body composition was evaluated one week before surgery and at discharge using a bioelectrical impedance analyser. RESULTS: The median rate of muscle mass loss (RMML) was 4.38% (range=-3.3 to +18.8). Patients with increased RMML had significantly poorer outcomes of overall survival than those with decreased RMML (p=0.015). On multivariate analysis, RMML [≥4.38, hazard ratio (HR)=2.033, 95% confidence interval (CI)=1.018-5.924, p=0.044) and pathological tumour depth (≥2, HR=3.099, 95%CI=1.339-7.172, p=0.008) were selected as independent prognostic factors. CONCLUSION: RMML after esophagectomy is indicative of poor prognosis in patients with esophageal cancer.


Esophageal Neoplasms/physiopathology , Esophagectomy/methods , Esophagogastric Junction/physiopathology , Muscular Disorders, Atrophic/physiopathology , Stomach Neoplasms/physiopathology , Aged , Disease-Free Survival , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophagectomy/adverse effects , Esophagogastric Junction/pathology , Esophagogastric Junction/surgery , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multivariate Analysis , Muscular Disorders, Atrophic/etiology , Prognosis , Retrospective Studies , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery
8.
Surg Today ; 50(7): 693-702, 2020 Jul.
Article En | MEDLINE | ID: mdl-31834495

PURPOSE: Skeletal muscle loss after gastrectomy can worsen patients' quality of life and prognosis. Laparoscopic gastrectomy is less invasive than open gastrectomy and has become commonly performed. However, the degree of skeletal muscle loss after laparoscopic procedures remains unclear. We herein report the degree and risk factors of psoas muscle loss after laparoscopic gastrectomy for gastric cancer. METHODS: The total psoas area (TPA) on computed tomography of 50 consecutive patients who underwent laparoscopic total gastrectomy (LTG) and 167 consecutive patients who underwent laparoscopic distal gastrectomy (LDG) for gastric cancer was retrospectively evaluated at one postoperative year. The TPA loss was compared between LDG and LTG and univariate and multivariate analyses were performed to identify the risk factors for TPA loss > 10%. RESULTS: The median TPA decrease rate was 5.9% in the LDG group and 15.6% in the LTG group. LTG and postoperative respiratory complications were independent factors associated with a severe TPA loss of > 10%. In the LTG group, no independent factors were identified in a multivariate analysis. In the LDG group, postoperative complications were identified as an independent risk factor for TPA loss > 10%. CONCLUSIONS: Laparoscopic gastrectomy leads to postoperative TPA loss, especially in patients who underwent LTG and had postoperative respiratory complications. Postoperative complications after LDG were also a risk factor for TPA loss.


Gastrectomy/adverse effects , Laparoscopy/adverse effects , Muscular Disorders, Atrophic/etiology , Postoperative Complications/etiology , Psoas Muscles/pathology , Aged , Female , Gastrectomy/methods , Humans , Laparoscopy/methods , Male , Middle Aged , Muscular Disorders, Atrophic/pathology , Prognosis , Quality of Life , Respiration Disorders/complications , Retrospective Studies , Risk Factors
9.
JCI Insight ; 4(24)2019 12 19.
Article En | MEDLINE | ID: mdl-31852842

Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non-fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-ß+CD146+CD34-CD56- pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-ß+PDGFR-α- phenotype typified non-fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non-fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-ß+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non-fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.


Human Embryonic Stem Cells/physiology , Muscular Disorders, Atrophic/therapy , Pericytes/transplantation , Rotator Cuff Injuries/complications , Rotator Cuff/pathology , Animals , Cell Differentiation , Cell Line , Chronic Disease/therapy , Disease Models, Animal , Female , Fibrosis , Humans , Injections, Intralesional , Mice , Muscle Development/physiology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology , Pericytes/physiology , Rotator Cuff/physiopathology , Transplantation, Heterologous/methods
10.
Int J Med Sci ; 16(6): 822-830, 2019.
Article En | MEDLINE | ID: mdl-31337955

Electrical stimulation (ES)-induced muscle contraction has multiple effects; however, mechano-responsiveness of bone tissue declines with age. Here, we investigated whether daily low-frequency ES-induced muscle contraction treatment reduces muscle and bone loss and ameliorates bone fragility in early-stage disuse musculoskeletal atrophy in aged rats. Twenty-seven-month-old male rats were assigned to age-matched groups comprising the control (CON), sciatic nerve denervation (DN), or DN with direct low-frequency ES (DN+ES) groups. The structural and mechanical properties of the trabecular and cortical bone of the tibiae, and the morphological and functional properties of the tibialis anterior (TA) muscles were assessed one week after DN. ES-induced muscle contraction force mitigated denervation-induced muscle and trabecular bone loss and deterioration of the mechanical properties of the tibia mid-diaphysis, such as the stiffness, but not the maximal load, in aged rats. The TA muscle in the DN+ES group showed significant improvement in the myofiber cross-sectional area and muscle force relative to the DN group. These results suggest that low-frequency ES-induced muscle contraction treatment retards trabecular bone and muscle loss in aged rats in early-stage disuse musculoskeletal atrophy, and has beneficial effects on the functional properties of denervated skeletal muscle.


Aging/physiology , Electric Stimulation Therapy/methods , Muscle, Skeletal/physiopathology , Muscular Disorders, Atrophic/therapy , Osteoporosis/therapy , Animals , Bone Density/physiology , Disease Models, Animal , Male , Muscle Contraction/physiology , Muscle Denervation/adverse effects , Muscle, Skeletal/innervation , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/physiopathology , Osteoporosis/physiopathology , Rats , Rats, Inbred F344 , Tibia/physiopathology , Treatment Outcome
11.
J Cachexia Sarcopenia Muscle ; 10(6): 1195-1209, 2019 12.
Article En | MEDLINE | ID: mdl-31313502

BACKGROUND: Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS: Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS: After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS: These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.


Aging/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/genetics , Muscular Disorders, Atrophic/physiopathology , Aging/genetics , Aging/metabolism , Animals , Disease Models, Animal , Hindlimb Suspension/adverse effects , Male , Muscle Fibers, Skeletal/physiology , Muscle Proteins/metabolism , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/metabolism , Organ Size , Protein Biosynthesis , Rats , Rats, Inbred F344 , Torque
12.
Skeletal Radiol ; 47(11): 1541-1549, 2018 Nov.
Article En | MEDLINE | ID: mdl-29948037

OBJECTIVE: Disuse and/or a non-weight-bearing condition changes muscle composition, with decreased skeletal muscle tissue and increased fat within (intramuscular adipose tissue, IntraMAT) and between (intermuscular adipose tissue, InterMAT) given muscles. Excessive adipose tissue contributes to dysfunctional and metabolically impaired muscle. How these adipose tissues change during orthopedic treatment (e.g., cast immobilization, daily use of crutches) is not well documented. This study aimed to quantify changes in IntraMAT, InterMAT, and thigh and calf muscle tissue during orthopedic treatment. MATERIALS AND METHODS: We studied 8 patients with fifth metatarsal bone or fibular fractures. The ankle joint involved underwent plaster casting for approximately 4 weeks, with crutches used during that time. Axial T1-weighted MRI at the mid-thigh and a 30% proximal site at the calf were obtained to measure IntraMAT and InterMAT cross-sectional areas (CSAs) and skeletal muscle tissue CSA before treatment and 4 weeks afterward. RESULTS: Thigh and calf muscle tissue CSAs were significantly decreased from before to after treatment: thigh, 85.8 ± 7.6 to 77.1 ± 7.3 cm2; calf, 53.3 ± 5.5 to 48.9 ± 5.0 cm2 (p < 0.05). None of the IntraMAT or InterMAT changes was statistically significant. There was a relation between the percentage change of thigh IntraMAT CSA and muscle tissue CSA (rs = -0.86, p < 0.01). CONCLUSIONS: The 4 weeks of treatment primarily induced skeletal muscle atrophy with less of an effect on IntraMAT or InterMAT. There is a risk of increasing IntraMAT relatively by decreasing skeletal muscle tissue size during orthopedic treatment.


Adipose Tissue/diagnostic imaging , Fibula/injuries , Fractures, Bone/therapy , Immobilization/adverse effects , Metatarsal Bones/injuries , Muscular Disorders, Atrophic/diagnostic imaging , Adipose Tissue/pathology , Aged , Aged, 80 and over , Casts, Surgical , Crutches , Female , Humans , Leg , Magnetic Resonance Imaging , Male , Metatarsal Bones/diagnostic imaging , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/pathology , Thigh , Weight-Bearing
13.
Appl Physiol Nutr Metab ; 43(11): 1131-1139, 2018 Nov.
Article En | MEDLINE | ID: mdl-29800529

The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.


Muscle Strength/physiology , Muscular Disorders, Atrophic , Resistance Training , Restraint, Physical/adverse effects , Arm/physiopathology , Arm Injuries/rehabilitation , Arm Injuries/therapy , Humans , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/physiopathology , Muscular Disorders, Atrophic/prevention & control
14.
Am J Pathol ; 187(12): 2674-2685, 2017 Dec.
Article En | MEDLINE | ID: mdl-28919112

Muscle dysfunction is the most important modifiable mediating factor in primary osteoarthritis (OA) because properly contracting muscles are a key absorber of forces acting on a joint. However, the pathological features of disuse muscle atrophy in OA patients have been rarely studied. Vastus medialis muscles of 14 female patients with OA (age range, 69 to 86 years), largely immobile for 1 or more years, were obtained during arthroplastic surgery and analyzed histologically. These were compared with female patients without arthritis, two with patellar fracture and two with patellar subluxation. Areas occupied by myofibers and adipose tissue were quantified. Large numbers of myofibers were lost in the vastus medialis of OA patients. The loss of myofibers was a possible cause of the reduction in muscle strength of the operated on knee. These changes were significantly correlated with an increase in intramuscular ectopic adipose tissue, and not observed in knees of nonarthritic patients. Resident platelet-derived growth factor receptor α-positive mesenchymal progenitor cells contributed to ectopic adipogenesis in vastus medialis muscles of OA patients. The present study suggests that significant loss of myofibers and ectopic adipogenesis in vastus medialis muscles are common pathological features of advanced knee OA patients with long-term loss of mobility. These changes may be related to the loss of joint function in patients with knee OA.


Adipose Tissue , Choristoma/pathology , Muscular Disorders, Atrophic/pathology , Osteoarthritis/complications , Quadriceps Muscle/pathology , Adipogenesis/physiology , Aged , Aged, 80 and over , Female , Humans , Muscular Disorders, Atrophic/etiology
15.
Appl Physiol Nutr Metab ; 42(2): 117-127, 2017 Feb.
Article En | MEDLINE | ID: mdl-28056188

The purpose of this study was to examine the possible mechanism underlying the protective effect of tetramethylpyrazine (TMP) against disuse-induced muscle atrophy. Sprague-Dawley rats were randomly assigned to receive 14 days of hindlimb unloading (HLU, a model of disuse atrophy) or cage controls. The rats were given TMP (60 mg/kg body mass) or vehicle (water) by gavage. Compared with vehicle treatment, TMP significantly attenuated the loss of gastrocnemius muscle mass (-33.56%, P < 0.01), the decrease of cross-sectional area of slow fiber (-10.99%, P < 0.05) and fast fiber (-15.78%, P < 0.01) during HLU. Although TMP failed to further improve recovery of muscle function or fatigability compared with vehicle treatment, it can suppress the higher level of lactate (-22.71%, P < 0.01) induced by HLU. Besides, TMP could effectually reduce the increased protein expression of muscle RING-finger protein 1 induced by HLU (-14.52%, P < 0.01). Furthermore, TMP can ameliorate the calcium overload (-54.39%, P < 0.05), the increase of malondialdehyde content (-19.82%, P < 0.05), the decrease of superoxide dismutase activity (21.34%, P < 0.05), and myonuclear apoptosis (-78.22%, P < 0.01) induced by HLU. Moreover, TMP significantly reduced HLU-induced increase of Bax to B-cell lymphoma 2 (-36.36%, P < 0.01) and cytochrome c release (-36.16%, P < 0.05). In conclusion, TMP attenuated HLU-induced gastrocnemius muscle atrophy through suppression of Ca2+/reactive oxygen species increase and consequent proteolysis and apoptosis. Therefore, TMP might exhibit therapeutic effect against oxidative stress, cytosolic calcium overload, and mitochondrial damage in disuse-induced muscle atrophy.


Apoptosis/drug effects , Muscle, Skeletal/drug effects , Muscular Disorders, Atrophic/prevention & control , Oxidative Stress/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Pyrazines/therapeutic use , Vasodilator Agents/therapeutic use , Animals , Biomarkers/metabolism , Calcium Signaling/drug effects , Enzyme Repression/drug effects , Female , Hindlimb Suspension/adverse effects , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/metabolism , Proteolysis/drug effects , Random Allocation , Rats, Sprague-Dawley , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
16.
Appl Physiol Nutr Metab ; 41(12): 1240-1247, 2016 Dec.
Article En | MEDLINE | ID: mdl-27841025

l-Carnitine was recently found to downregulate the ubiquitin proteasome pathway (UPP) and increase insulin-like growth factor 1 concentrations in animal models. However, the effect of l-carnitine administration on disuse muscle atrophy induced by hindlimb suspension has not yet been studied. Thus, we hypothesized that l-carnitine may have a protective effect on muscle atrophy induced by hindlimb suspension via the Akt1/mTOR and/or UPP. Male Wistar rats were assigned to 3 groups: hindlimb suspension group, hindlimb suspension with l-carnitine administration (1250 mg·kg-1·day-1) group, and pair-fed group adjusted hindlimb suspension. l-Carnitine administration for 2 weeks of hindlimb suspension alleviated the decrease in weight and fiber size in the soleus muscle. In addition, l-carnitine suppressed atrogin-1 mRNA expression, which has been reported to play a pivotal role in muscle atrophy. The present study shows that l-carnitine has a protective effect against soleus muscle atrophy caused by hindlimb suspension and decreased E3 ligase messenger RNA expression, suggesting the possibility that l-carnitine protects against muscle atrophy, at least in part, through the inhibition of the UPP. These observations suggest that l-carnitine could serve as an effective supplement in the decrease of muscle atrophy caused by weightlessness in the fields of clinical and rehabilitative research.


Carnitine/therapeutic use , Dietary Supplements , Enzyme Repression , Muscle Proteins/antagonists & inhibitors , Muscle, Skeletal/metabolism , Muscular Disorders, Atrophic/prevention & control , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Biomarkers/metabolism , Hindlimb Suspension/adverse effects , Immunohistochemistry , Male , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Proteasome Endopeptidase Complex , Proteasome Inhibitors/therapeutic use , Random Allocation , Rats , Rats, Wistar , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Weightlessness/adverse effects
17.
Physiol Rep ; 4(18)2016 09.
Article En | MEDLINE | ID: mdl-27650250

The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.


Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Fish Oils/chemistry , Gene Regulatory Networks , Hindlimb Suspension/adverse effects , Muscular Disorders, Atrophic/metabolism , Animals , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Gene Regulatory Networks/drug effects , Male , Muscle, Skeletal/drug effects , Muscular Disorders, Atrophic/etiology , Rats , Signal Transduction/drug effects
18.
Clin Adv Hematol Oncol ; 14(6): 436-46, 2016 Jun.
Article En | MEDLINE | ID: mdl-27379813

The use of targeted therapies in patients with genitourinary malignancies has significantly improved outcomes. For example, androgen receptor (AR) pathway inhibitors have improved outcomes for patients with prostate cancer, and antiangiogenic agents have improved outcomes for those with kidney cancer. However, these advances have been accompanied by musculoskeletal side effects that manifest as physical dysfunction. Although the effects of androgen deprivation therapy on skeletal muscle are well-known, an additional concern is that the muscle loss associated with these newer drugs-especially AR pathway inhibitors-may result in insulin resistance and metabolic syndrome, thus increasing the risk for cardiovascular events and diabetes. Antiangiogenic agents also may cause muscle loss, although this has been poorly described in the literature. As these targeted therapies begin to be used in the earlier stages of treatment, there will be a critical need to prevent treatment-related toxicities with nonpharmacologic interventions. Over the past decade, exercise training has emerged as a novel nonpharmacologic adjunctive method to address toxicities resulting from these targeted therapies. Despite numerous studies in patients with prostate cancer, there remains a large gap in our knowledge of the true efficacy of exercise therapy, as well as the best way to prescribe exercise programs. Here, we suggest that the central role of skeletal muscle in the development of side effects of AR pathway inhibitors and antiangiogenic agents may unlock a number of unique opportunities to study how exercise prescriptions can be used more effectively. Resistance training may be a particularly important modality.


Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/therapy , Resistance Training , Urogenital Neoplasms/complications , Androgen Antagonists/adverse effects , Androgen Antagonists/therapeutic use , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Agents, Hormonal/therapeutic use , Humans , Molecular Targeted Therapy , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Neoplasm Staging , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome , Urogenital Neoplasms/diagnosis , Urogenital Neoplasms/drug therapy , Urogenital Neoplasms/mortality
20.
Ann Thorac Surg ; 101(2): 742-4, 2016 Feb.
Article En | MEDLINE | ID: mdl-26777926

A 31-year-old woman underwent implantation of a DuraHeart left ventricular assist device as bridge to transplantation. Aortic insufficiency was not observed before implantation but developed after implantation and became severe approximately 2 years later. Macroscopically, the aortic valve excised during heart transplantation showed no morphologic alteration. Microscopically, the collagen fibers in the fibrosa layer and the elastic fibers in the ventricularis layer of the valve leaflets were reduced in number, with irregular arrangement. These characteristics can be explained by a disuse atrophic change, and may lead to a better understanding of the mechanism underlying the development of aortic insufficiency.


Aortic Valve Insufficiency/etiology , Heart-Assist Devices/adverse effects , Muscular Disorders, Atrophic/etiology , Adult , Female , Humans
...