Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658362

RESUMEN

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Asunto(s)
Catequina , Leucocitos Mononucleares , Mitocondrias , Humanos , Catequina/farmacología , Catequina/administración & dosificación , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Masculino , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/genética , Adulto , Femenino , Inflamación/metabolismo , Inflamación/patología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/tratamiento farmacológico , Desmina/metabolismo , Desmina/genética
2.
J Mol Histol ; 54(4): 405-413, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358754

RESUMEN

Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of ß-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Ratones , Animales , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Músculo Esquelético/fisiología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Ratones Noqueados
3.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34359994

RESUMEN

Mitochondria are key players of aerobic respiration and the production of adenosine triphosphate and constitute the energetic core of eukaryotic cells. Furthermore, cells rely upon mitochondria homeostasis, the disruption of which is reported in pathological processes such as liver hepatotoxicity, cancer, muscular dystrophy, chronic inflammation, as well as in neurological conditions including Alzheimer's disease, schizophrenia, depression, ischemia and glaucoma. In addition to the well-known spontaneous cell-to-cell transfer of mitochondria, a therapeutic potential of the transplant of isolated, metabolically active mitochondria has been demonstrated in several in vitro and in vivo experimental models of disease. This review explores the striking outcomes achieved by mitotherapy thus far, and the most relevant underlying data regarding isolated mitochondria transplantation, including mechanisms of mitochondria intake, the balance between administration and therapy effectiveness, the relevance of mitochondrial source and purity and the mechanisms by which mitotherapy is gaining ground as a promising therapeutic approach.


Asunto(s)
Enfermedad de Alzheimer/terapia , Depresión/terapia , Glaucoma/terapia , Hepatitis/terapia , Isquemia/terapia , Mitocondrias/trasplante , Distrofias Musculares/terapia , Neoplasias/terapia , Esquizofrenia/terapia , Adenosina Trifosfato/biosíntesis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Depresión/genética , Depresión/metabolismo , Depresión/patología , Modelos Animales de Enfermedad , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Hepatitis/genética , Hepatitis/metabolismo , Hepatitis/patología , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Hígado/metabolismo , Hígado/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación Oxidativa , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Resultado del Tratamiento
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751747

RESUMEN

Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.


Asunto(s)
Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/trasplante , Distrofias Musculares/terapia , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas de Transporte de Catión Orgánico/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética
5.
Clin Neurol Neurosurg ; 192: 105734, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065942

RESUMEN

OBJECTIVES: Collagen VI-related dystrophies (COL6-RDs) have a broad clinical spectrum and are caused by mutations in the COL6A1, COL6A2 and COL6A3 genes. Despite the clinical variability, two phenotypes are classically recognized: Bethlem myopathy (BM, milder form) and Ullrich congenital muscular dystrophy (UCMD, more severe form), with many patients presenting an intermediate phenotype. In this work, we present clinical and genetic data from 28 patients (27 families), aged 6-38 years (mean of 16.96 years), with COL6-RDs. PATIENTS AND METHODS: Clinical, muscle histology and genetic data are presented. COL6A1, COL6A2 and COL6A3 genes were analyzed by next-generation sequencing (NGS). RESULTS: Homozygous or heterozygous variants were found in COL6A1 (12 families), COL6A2 (12 families) and COL6A3 (3 families). Patients with the severe UCMD phenotype (three cases) had a homogeneous clinical picture characterized by neonatal onset of manifestations, no gait acquisition and a stable course, but with severe respiratory involvement. Most of the patients with the mild UCMD phenotype had neonatal onset of manifestations (88.8 %), delayed motor development (66.6 %), slowly progressive course, pulmonary involvement (55.5 %) and loss of the walking capacity before the age of 10 (66.6 %). In the intermediate group (nine patients), some children had neonatal onset of manifestations (44.5 %) and delayed motor development (88.9 %); but all of them achieved the ability to walk and were still ambulatory. Some patients that had the BM phenotype presented neonatal manifestations (57.1 %); however, all of them had normal motor development and normal pulmonary function. Only one patient from the group of BM lost the walking capacity during the evolution of the disease. Other frequent findings observed in all groups were joint retractions, spinal deformities, distal hyperextensibility, congenital hip dislocation and keloid formation. CONCLUSION: COL6-RDs present variable clinical manifestations, but common findings are helpful for the clinical suspicion. NGS is a valuable approach for diagnosis, providing useful information for the genetic counseling of families.


Asunto(s)
Colágeno Tipo VI/genética , Contractura/fisiopatología , Distrofias Musculares/congénito , Esclerosis/fisiopatología , Adolescente , Adulto , Edad de Inicio , Brasil , Niño , Estudios de Cohortes , Contractura/genética , Contractura/patología , Progresión de la Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Luxación Congénita de la Cadera/fisiopatología , Humanos , Queloide/fisiopatología , Masculino , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Esclerosis/genética , Esclerosis/patología , Curvaturas de la Columna Vertebral/fisiopatología , Adulto Joven
6.
Methods Mol Biol ; 2063: 157-169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31667769

RESUMEN

Skeletal muscle has a remarkable capacity to regenerate after injuries mainly due to a reservoir of precursor cells named satellite cells (SCs), which are responsible for after-birth growth and response to lesions, either by exercise or disease. Upon injury, the regenerative response includes SCs exit of quiescence, activation, proliferation, and fusion to repair or form new myofibers. This process is accompanied by inflammation, with infiltration of immune cells, primarily macrophages. Every phase of regeneration is highly regulated and orchestrated by many molecules and signaling pathways. The elucidation of players and mechanisms involved in muscle degeneration and regeneration is of extreme importance, especially for therapeutic strategies for muscle diseases.Here we are proposing a model of muscle injury induced by electroporation, which is an efficient method to induce muscle damage in order to follow the steps involved in degeneration and regeneration. Three days after electroporation, the muscle shows prominent signals of degeneration, like areas of necrosis and infiltration of macrophages, followed by regeneration, observed by the presence of centrally nucleated myofibers. After 5 days the regeneration is very active, with small dMyHC positive fibers. Fifteen days later, we observe a general regeneration of the muscle, with fibers with increased diameter after 60 days. This methodology is an easy and simple alternative to induce muscle lesion. It can be employed to study alterations in gene expression and the process of satellite cell recruitment, both in healthy and dystrophic/myopathic animal models for muscular dystrophy.


Asunto(s)
Electroporación/métodos , Regeneración Tisular Dirigida/métodos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/lesiones , Regeneración/fisiología , Animales , Modelos Animales de Enfermedad , Macrófagos/inmunología , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Células Satélite del Músculo Esquelético/metabolismo
7.
Methods Mol Biol ; 2063: 171-180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31667770

RESUMEN

The study of the population of muscle satellite cells (SC) is important to understand muscle regeneration and its involvement in the different dystrophic processes. We studied two dystrophic mouse models, Largemyd and Lama2dy2j/J, that show an intense and very similar pattern of muscle degeneration, but with differences in the expression of genes involved in the regeneration cascade. They are, therefore, interesting models to study possible differences in the mechanism of activation and action of satellite cells in the dystrophic muscle. The main objectives of this chapter are to describe the isolation and characterization of SC populations, evaluating the presence of myogenic and pluripotent stem cells markers in normal and dystrophic muscles.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/patología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Animales , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Distrofias Musculares/patología
8.
Sci Rep ; 9(1): 11842, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413358

RESUMEN

Satellite cells (SCs) are the main muscle stem cells responsible for its regenerative capacity. In muscular dystrophies, however, a failure of the regenerative process results in muscle degeneration and weakness. To analyze the effect of different degrees of muscle degeneration in SCs behavior, we studied adult muscle of the dystrophic strains: DMDmdx, Largemyd, DMDmdx/Largemyd, with variable histopathological alterations. Similar results were observed in the dystrophic models, which maintained normal levels of PAX7 expression, retained the Pax7-positive SCs pool, and their proliferation capacity. Moreover, elevated expression of MYOG, an important myogenic factor, was also observed. The ability to form new fibers was verified by the presence of dMyHC positive regenerating fibers. However, those fibers had incomplete maturation characteristics, such as small and homogenous fiber caliber, which could contribute to their dysfunction. We concluded that dystrophic muscles, independently of their degeneration degree, retain their SCs pool with proliferating and regenerative capacities. Nonetheless, the maturation of these new fibers is incomplete and do not prevent muscle degeneration. Taken together, these results suggest that the improvement of late muscle regeneration should better contribute to therapeutic approaches.


Asunto(s)
Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Regeneración , Células Satélite del Músculo Esquelético/patología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Antígeno Ki-67/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/metabolismo
9.
PLoS One ; 14(4): e0215590, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31009514

RESUMEN

Considering potential Tempol effects on mdx muscle fibers, in this study we evaluated its effects on relevant dystrophic phenotypic characteristics, such as muscle degeneration, inflammatory process and angiogenesis, which as yet have not been investigated. Mdx mice were randomly assigned into three groups: mdxS, the control group receiving intraperitoneal (i.p.) injections of saline solution (100µL); mdxP, positive control group receiving prednisolone (1mg/kg) by oral gavage; and mdxT, treated group receiving i.p. injections of tempol (100 mg/kg). C57BL/10 mice were also used as controls. Tempol treatment promoted gain in muscle strength and reduced myonecrosis and inflammatory response in the dystrophic diaphragm (DIA) and biceps brachii (BB) muscles. No evidence of Tempol's beneficial performance on angiogenesis in DIA and BB mdx muscles was found. The findings presented here show that Tempol treatment improves dystrophic phenotype, supporting its use as a potential therapeutic strategy in DMD.


Asunto(s)
Óxidos N-Cíclicos/farmacología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Distrofias Musculares/fisiopatología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Óxidos N-Cíclicos/administración & dosificación , Diafragma/metabolismo , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraperitoneales , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Fenotipo , Marcadores de Spin
10.
Methods Mol Biol ; 1489: 513-521, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27734402

RESUMEN

CCN2 or connective tissue growth factor (CTGF) is a matricellular protein that regulates several cellular processes. In skeletal muscle, CTGF is a key modulator of fibrogenesis, is increased in pathological conditions such as muscular dystrophies, and plays a major role in the pathology outcome. Overexpression of CTGF in skeletal muscle of wild-type mice results in muscle damage, fibrosis, and reduction of strength. In contrast, a decrease in CTGF in dystrophic mice increases strength and reduces damage and fibrosis. Thus, CTGF is a relevant target to study in skeletal muscle pathology and its possible modulation by different treatments or potential new drugs to develop new strategies for the treatment of muscular dystrophies. We summarize the techniques used to detect CTGF in the skeletal muscle of dystrophic mdx mice.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Eur J Hum Genet ; 24(9): 1301-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26932192

RESUMEN

Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.


Asunto(s)
Distrofina/genética , Distrofias Musculares/genética , N-Acetilglucosaminiltransferasas/genética , Transcriptoma , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Mutación , Fenotipo
12.
Microsc Res Tech ; 78(1): 85-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25327690

RESUMEN

Dystrophin-deficient muscles have repeated cycles of necrosis and regeneration, being susceptible to injury induced by muscle contractions. Some studies have demonstrated that tendons are also affected in mdx mice, based especially on the changes in biomechanical properties arising from the respective linked muscles. However, most studies have focused only on alterations in the myotendinous junction. Thus, the purpose of this work was to study biochemical and morphological alterations in the Achilles tendons of 60-day-old mdx mice. Hydroxyproline quantification, showed higher collagen concentration in the mdx mice as compared with the control. No difference between the tendons of both groups was found in the noncollagenous proteins dosage, and in the amount of collagen type III detected in the western blotting analysis. The zymography for gelatinases detection showed higher amounts of metaloproteinase-2 (active isoform) and of metalloproteinase-9 (latent isoform) in the mdx mice. Measurements of birefringence, using polarization microscopy, showed higher molecular organization of the collagen fibers in the tendons of mdx mice in comparison to the control group, with presence of larger areas of crimp. Ponceau SS-stained tendon sections showed stronger staining of the extracellular matrix in the mdx groups. Toluidine blue-stained sections showed more intense basophilia in tendons of the control group. In morphometry, a higher number of inflammatory cells was detected in the epitendon of mdx group. In conclusion, the Achilles tendon of 60-day-old mdx mice presents higher collagen concentration and organization of the collagen fibers, enhanced metalloproteinase-2 activity, as well as prominent presence of inflammatory cells and lesser proteoglycans.


Asunto(s)
Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Animales , Matriz Extracelular/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos mdx , Distrofias Musculares/metabolismo , Distrofias Musculares/patología
13.
Pediatr Neurol ; 50(4): 400-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24508248

RESUMEN

BACKGROUND: Congenital muscular dystrophy is a clinically and genetically heterogeneous group of myopathies. Congenital muscular dystrophy related to lamin A/C is rare and characterized by early-onset hypotonia with axial muscle weakness typically presenting with a loss in motor acquisitions within the first year of life and a dropped-head phenotype. METHODS: Here we report the clinical and histological characteristics of four unrelated Brazilian patients with dropped-head syndrome and mutations in the LMNA gene. RESULTS: All patients had previously described mutations (p.E358K, p.R249W, and p.N39S) and showed pronounced cervical muscle weakness, elevation of serum creatine kinase, dystrophic pattern on muscle biopsy, and respiratory insufficiency requiring ventilatory support. Three of the patients manifested cardiac arrhythmias, and one demonstrated a neuropathic pattern on nerve conduction study. CONCLUSION: Although lamin A/C--related congenital muscular dystrophy is a clinically distinct and recognizable phenotype, genotype/phenotype correlation, ability to anticipate onset of respiratory and cardiac involvement, and need for nutritional support remain difficult.


Asunto(s)
Lamina Tipo A/genética , Distrofias Musculares/genética , Distrofias Musculares/fisiopatología , Fenotipo , Brasil , Niño , Análisis Mutacional de ADN , Femenino , Cabeza , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Distrofias Musculares/patología , Mutación , Cuello/patología , Postura
14.
Mol Cell Probes ; 28(4): 118-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24225367

RESUMEN

Primary deficiency of laminin alpha-2 due to mutations in the LAMA2 gene accounts for 30% of all patients with congenital muscular dystrophy. Here, we present seven patients with partial or total laminin alpha-2 deficiency (MDC1A) with a wide clinical spectrum, ranging from ambulant patients to patients who were never able to stand or sit. We identified two pathogenic mutations in the LAMA2 gene in all patients except for one patient in whom only one mutation was found. Six of the mutations were previously undescribed. In some of the milder cases, laminin alpha-2 expression in the muscle biopsy was only slightly reduced. These findings emphasize that analysis of the LAMA2 gene might be necessary in patients with muscle weakness, cerebral white matter changes and high creatine kinase levels, even in the presence of laminin alpha-2 in the muscle biopsy.


Asunto(s)
Laminina/genética , Distrofias Musculares/congénito , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Adolescente , Adulto , Niño , Creatina Quinasa/metabolismo , Femenino , Estudios de Asociación Genética , Variación Genética , Humanos , Lactante , Laminina/deficiencia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Mutación , Polimorfismo de Nucleótido Simple , Sustancia Blanca/patología , Adulto Joven
15.
PLoS One ; 8(11): e75340, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282497

RESUMEN

ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.


Asunto(s)
Adenosina Trifosfato/farmacología , Apoptosis/efectos de los fármacos , Músculo Esquelético/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Conexinas/metabolismo , Estimulación Eléctrica , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteína X Asociada a bcl-2/genética
16.
Anat Rec (Hoboken) ; 296(10): 1546-51, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23934706

RESUMEN

A relationship between compromised muscles and other tissues has been demonstrated in mdx mouse, an animal model studied for understanding of Duchenne muscular dystrophy. The hypothesis is that changes in the calcaneal tendon of mdx mice occur previous to the onset of rigorous and most marked episodes of muscle degeneration, which start suddenly after 21 days of life. Thus, this study aimed to identify possible alterations in the calcaneal tendon of mdx mouse at 21 days of age. Control and mdx tendons were submitted to mechanical tensile testing, quantification of hydroxyproline, and staining with toluidine blue and picrosirius red. Hydroxyproline content was similar between mdx and control groups. The control tendon presented higher mechanical strength (load, stress, and elastic modulus) and its morphological analysis showed a larger number of round fibroblasts, nuclei with well-decondensed chromatin, and slightly metachromatic well-stained cytoplasmic material, different from that observed in mdx tendons. The results suggest that the absence of dystrophin in mdx mouse can provoke directly or indirectly alterations in the mechanical properties and morphology of the calcaneal tendon.


Asunto(s)
Calcáneo/anatomía & histología , Modelos Animales de Enfermedad , Músculo Esquelético/anatomía & histología , Distrofias Musculares/patología , Estrés Mecánico , Tendones/anatomía & histología , Animales , Fenómenos Biomecánicos , Calcáneo/metabolismo , Hidroxiprolina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Tendones/metabolismo , Resistencia a la Tracción
17.
Matrix Biol ; 32(6): 289-97, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23583522

RESUMEN

Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.


Asunto(s)
Glicosaminoglicanos/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Unión Neuromuscular/metabolismo , Proteoglicanos/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Glicosaminoglicanos/química , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/patología , Proteoglicanos/química , Proteoglicanos/genética , Proteolisis , Transducción de Señal
18.
Mol Neurobiol ; 48(1): 71-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23508358

RESUMEN

Congenital muscular dystrophies present mutated gene in the LARGE mice model and it is characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, the pathophysiology of the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the oxidative damage and energetic metabolism in the brain tissue as well as cognitive involvement in the LARGE((myd)) mice model of muscular dystrophy. With this aim, we used adult homozygous, heterozygous, and wild-type mice that were divided into two groups: behavior and biochemical analyses. In summary, it was observed that homozygous mice presented impairment to the habituation and avoidance memory tasks; low levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex, hippocampus, cortex and cerebellum; increased lipid peroxidation in the prefrontal cortex, hippocampus, striatum, and cerebellum; an increase of protein peroxidation in the prefrontal cortex, hippocampus, striatum, cerebellum, and cortex; a decrease of complex I activity in the prefrontal cortex and cerebellum; a decrease of complex II activity in the prefrontal cortex and cerebellum; a decrease of complex IV activity in the prefrontal cortex and cerebellum; an increase in the cortex; and an increase of creatine kinase activity in the striatum and cerebellum. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting BDNF levels, oxidative particles, and energetic metabolism thus contributing to the memory storage and restoring process.


Asunto(s)
Sistema Nervioso Central/patología , Distrofias Musculares/patología , Animales , Reacción de Prevención , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón , Metabolismo Energético , Ratones , Distrofias Musculares/metabolismo , Oxidación-Reducción , Estrés Oxidativo
19.
Cell Physiol Biochem ; 29(5-6): 919-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22613991

RESUMEN

Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by reduced or no expression of dystrophin, a cytoskeletal protein that provides structural integrity to muscle fibres. A promising pharmacological treatment for DMD aims to increase the level of a structural dystrophin homolog called utrophin. Neuregulin-1 (NRG-1), a growth factor that potentiates myogenesis, induces utrophin expression in skeletal muscle cells. Microarray analysis of total gene expression allowed us to determine that neuregulin-1ß (NRG-1ß) is one of 150 differentially expressed genes in electrically stimulated (400 pulses, 1 ms, 45 Hz) dystrophic human skeletal muscle cells (RCDMD). We investigated the effect of depolarization, and the involvement of intracellular Ca(2+) and PKC isoforms on NRG-1ß expression in dystrophic myotubes. Electrical stimulation of RCDMD increased NRG-1ß mRNA and protein levels, and mRNA enhancement was abolished by actinomycin D. NRG-1ß transcription was inhibited by BAPTA-AM, an intracellular Ca(2+) chelator, and by inhibitors of IP(3)-dependent slow Ca(2+) transients, like 2-APB, Ly 294002 and Xestospongin B. Ryanodine, a fast Ca(2+) signal inhibitor, had no effect on electrical stimulation-induced expression. BIM VI (general inhibitor of PKC isoforms) and Gö 6976 (specific inhibitor of Ca(2+)-dependent PKC isoforms) abolished NRG-1ß mRNA induction. Our results suggest that depolarization induced slow Ca(2+) signals stimulate NRG-1ß transcription in RCDMD cells, and that Ca(2+)-dependent PKC isoforms are involved in this process. Based on utrophin's ability to partially compensate dystrophin disfunction, knowledge on the mechanism involved on NRG-1 up-regulation could be important for new therapeutic strategies design.


Asunto(s)
Calcio/metabolismo , Estimulación Eléctrica , Distrofias Musculares/patología , Neurregulina-1/fisiología , Regulación hacia Arriba , Secuencia de Bases , Línea Celular , Cartilla de ADN , Perfilación de la Expresión Génica , Humanos , Músculo Esquelético , Neurregulina-1/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
20.
Neuromolecular Med ; 14(1): 74-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22362587

RESUMEN

The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx), SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-ß1 and Pro-collagen 1α2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-ß1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Distrofias Musculares/metabolismo , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Disferlina , Distrofina/genética , Fibrosis , Laminina/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular/fisiología , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Miogenina/genética , N-Acetilglucosaminiltransferasas/genética , Células Satélite del Músculo Esquelético/metabolismo , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA