Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Allergol Immunopathol (Madr) ; 52(5): 59-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39278852

RESUMEN

Acquired myasthenia (AM), a debilitating autoimmune disease, is typically characterized by skeletal muscle fatigue and weakness. Despite advances in myasthenia gravis treatment, current approaches remain unsatisfactory and many result in unexpected side effects. Traditional Chinese medicine has shown great potential in the treatment of myasthenia gravis, including relieving myasthenic symptoms, improving patients' quality of life, and reducing Western medicine side effects. This study investigates the protective effects and mechanism of BZYQD in mice with acquired myasthenia. BZYQD alleviates the reduced grip strength and increased expression of MAFbx and MuRF-1 in mice with acquired myasthenia. It also reduces levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α in the mouse serum. In addition, BZYQD reduces ROS accumulation and the mitochondrial ROS production rate, while increasing ATP levels and mitochondrial membrane potential in mice with acquired myasthenia. Moreover, BZYQD decreases the expression of p-JAK2, p-STAT3, and p-AKT in the skeletal muscle of mice with acquired myasthenia. In summary, BZYQD reduces inflammation, enhances mitochondrial function, and regulates the JAK2/STAT3/AKT signaling pathway to treat acquired myasthenia.


Asunto(s)
Medicamentos Herbarios Chinos , Janus Quinasa 2 , Mitocondrias , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/inmunología , Femenino , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/inmunología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(39): e2408324121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288173

RESUMEN

Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.


Asunto(s)
Miastenia Gravis , Unión Neuromuscular , Proteínas Tirosina Quinasas Receptoras , Receptores Colinérgicos , Animales , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/inmunología , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Miastenia Gravis/inmunología , Miastenia Gravis/tratamiento farmacológico , Humanos , Proteínas Relacionadas con Receptor de LDL/inmunología , Autoanticuerpos/inmunología , Femenino , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Anticuerpos/inmunología , Anticuerpos/farmacología , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados
3.
Int Immunopharmacol ; 139: 112699, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024745

RESUMEN

BACKGROUND: Dihydroartemisinin (DHA), a derivative and active metabolite of artemisinin, possesses various immunomodulatory properties. However, its role in myasthenia gravis (MG) has not been clearly explored. Here, we investigated the role of DHA in experimental autoimmune myasthenia gravis (EAMG) and its potential mechanisms. METHODS: The AChR97-116 peptide-induced EAMG model was established in Lewis rats and treated with DHA. Flow cytometry was used to assess the release of Th cell subsets and Treg cells, and 16S rRNA gene amplicon sequence analysis was applied to explore the relationship between the changes in the intestinal flora after DHA treatment. In addition, network pharmacology and molecular docking were utilized to explore the potential mechanism of DHA against EAMG, which was further validated in the rat model by immunohistochemical and RT-qPCR for further validation. RESULTS: In this study, we demonstrate that oral administration of DHA ameliorated clinical symptoms in rat models of EAMG, decreased the expression level of Th1 and Th17 cells, and increased the expression level of Treg cells. In addition, 16S rRNA gene amplicon sequence analysis showed that DHA restored gut microbiota dysbiosis in EAMG rats by decreasing Ruminococcus abundance and increasing the abundance of Clostridium, Bifidobacterium, and Allobaculum. Using network pharmacology, 103 potential targets of DHA related to MG were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that PI3K-AKT signaling pathway was related to the treatment of DHA on EAMG. Meanwhile, molecular docking verified that DHA has good binding affinity to AKT1, CASP3, EGFR, and IGF1. Immunohistochemical staining showed that DHA treatment significantly inhibited the phosphorylated expression of AKT and PI3K in the spleen tissues of EAMG rats. In EAMG rats, RT-qPCR results also showed that DHA reduced the mRNA expression levels of PI3K and AKT1. CONCLUSIONS: DHA ameliorated EAMG by inhibiting the PI3K-AKT signaling pathway, regulating CD4+ T cells and modulating gut microbiota, providing a novel therapeutic approach for the treatment of MG.


Asunto(s)
Artemisininas , Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Miastenia Gravis Autoinmune Experimental , Ratas Endogámicas Lew , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Ratas , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/inmunología , Femenino , Disbiosis/tratamiento farmacológico , Disbiosis/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo
4.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38785143

RESUMEN

Astragaloside IV (AS­IV) has various pharmacological effects, including antioxidant and immunoregulatory properties, which can improve myasthenia gravis (MG) symptoms. However, the potential mechanism underlying the effects of AS­IV on MG remains to be elucidated. The present study aimed to investigate whether AS­IV has a therapeutic effect on MG and its potential mechanism of action. By subcutaneously immunizing rats with R97­116 peptide, an experimental autoimmune (EA) MG rat model was established. AS­IV (40 or 80 mg/kg/day) treatment was then applied for 28 days after modeling. The results demonstrated that AS­IV significantly ameliorated the weight loss, Lennon score and pathological changes in the gastrocnemius muscle of EAMG rats compared with the model group. Additionally, the levels of acetylcholine receptor antibody (AChR­Ab) were significantly decreased, whereas mitochondrial function [ATPase and cytochrome c (Cyt­C) oxidase activities] and ultrastructure were improved in the AS­IV treated rats. Moreover, the mRNA and protein expression levels of phosphatase and tensin homolog­induced putative kinase 1, Parkin, LC3II and Bcl­2, key signaling molecules for mitophagy and apoptosis, were upregulated, whereas the mRNA and protein expression levels of p62, Cyt­C, Bax, caspase 3 and caspase 9 were downregulated following AS­IV intervention. In conclusion, AS­IV may protect against EAMG in a rat model by modulating mitophagy and apoptosis. These findings indicated the potential mechanism underlying the effects of AS­IV on MG and provided novel insights into treatment strategies for MG.


Asunto(s)
Apoptosis , Mitofagia , Miastenia Gravis Autoinmune Experimental , Saponinas , Triterpenos , Animales , Saponinas/farmacología , Apoptosis/efectos de los fármacos , Triterpenos/farmacología , Mitofagia/efectos de los fármacos , Ratas , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Femenino , Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Receptores Colinérgicos/metabolismo , Ratas Sprague-Dawley , Sustancias Protectoras/farmacología
5.
Cells ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534352

RESUMEN

Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Receptores Colinérgicos , Ratones , Animales , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/metabolismo , Unión Neuromuscular/patología , Proteínas del Sistema Complemento , Autoanticuerpos , Inmunización
6.
Life Sci ; 336: 122287, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995933

RESUMEN

BACKGROUND: Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS: We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS: The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION: BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.


Asunto(s)
Inmunidad Humoral , Miastenia Gravis Autoinmune Experimental , Animales , Interleucina-6/farmacología , Subgrupos de Linfocitos T , Células TH1 , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/patología , Inflamación/tratamiento farmacológico
7.
J Control Release ; 364: 458-472, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37935259

RESUMEN

Cysteinyl aspartate-specific proteinase-1 (caspase-1) is a multifunctional inflammatory mediator in many inflammation-related diseases. Previous studies show that caspase-1 inhibitors produce effective therapeutic outcomes in a rat model of myasthenia gravis. However, tissue toxicity and unwanted off-target effects are the major disadvantages limiting their clinical application as therapeutic agents. This study shows that dendritic cell-derived extracellular vesicles (EVs) loaded with a caspase-1 inhibitor (EVs-VX-765) are phagocytized mainly by macrophages, and caspase-1 is precisely expressed in macrophages. Furthermore, EVs-VX-765 demonstrates excellent therapeutic effects through a macrophage-dependent mechanism, and it notably inhibits the level of interleukin-1ß and subsequently inhibits Th17 response and germinal center (GC) reactions. In addition, EVs-VX-765 demonstrates better therapeutic effects than routine doses of VX-765, although drug loading is much lower than routine doses, consequently reducing tissue toxicity. In conclusion, this study's findings suggest that EV-mediated delivery of caspase-1 inhibitors is effective for treating myasthenia gravis and is promising for clinical applications.


Asunto(s)
Vesículas Extracelulares , Miastenia Gravis Autoinmune Experimental , Ratas , Animales , Macrófagos , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Caspasa 1
8.
Int Immunopharmacol ; 115: 109693, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36638660

RESUMEN

BACKGROUND: An imbalance in Th17/regulatory T (Treg) cells is the major pathogenic mechanism underlying myasthenia gravis (MG). JAK2 inhibitors selectively inhibit JAK2 and reduce inflammatory responses. However, there have been no studies examining the therapeutic effects of JAK2 inhibitors in the context of MG. METHODS: Here, an experimental autoimmune MG (EAMG) rat model was established to explore the therapeutic effect of JAK2 inhibitors on EAMG rats immunized with the AChR α-subunit (97-116 peptide). A JAK2 inhibitor was administered to EAMG rats both in vivo and in vitro. The following experimental methods were used to evaluate the effects of JAK2 inhibitors. The behavioral scores and body weights of the rats were assessed on alternate days. Serum anti-AChR (97-116) IgG and cytokine levels were detected using ELISA. CD4+ T cell subsets and related transcription factors in mononuclear cells were detected using flow cytometry and qPCR, respectively. The expression levels of protein molecules in the signaling pathway were detected by western blotting, and the neuromuscular junctions were observed using immunofluorescence. RESULTS: The results revealed that JAK2 inhibitors could regulate Th17/Treg balance in vivo and in vitro. JAK2 inhibitors reduced the immune response in EAMG rats (including reducing pro-inflammatory cytokines and postsynaptic membrane complement deposition), improved clinical symptoms, and increased AChR aggregation in the postsynaptic membrane. Meanwhile, this study demonstrated that JAK2 inhibitor treatment suppressed the phosphorylation of JAK2/STAT3 and AKT/mTOR pathways and decreased the expression level of the IL-23 receptor. CONCLUSIONS: This study reveals that there is crosstalk between the JAK2/STAT3 and AKT/mTOR pathways in EAMG rats. JAK2 inhibitors can ameliorate EAMG by regulating Th17/Treg balance by inhibiting both signaling pathways. Our study provides new potential therapeutic targets for MG immunotherapy.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Linfocitos T Reguladores , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Citocinas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Janus Quinasa 2/metabolismo
9.
Nat Biotechnol ; 41(9): 1229-1238, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36658341

RESUMEN

Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Receptores Colinérgicos , Humanos , Ratones , Animales , Receptores Colinérgicos/uso terapéutico , Autoantígenos/uso terapéutico , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Linfocitos T , Autoanticuerpos/uso terapéutico , Inmunoglobulina G , Proteínas Tirosina Quinasas/uso terapéutico , Músculos
10.
Immunol Lett ; 250: 29-40, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108773

RESUMEN

Myasthenia gravis (MG) is characterized by fatigable skeletal muscle weakness with a fluctuating and unpredictable disease course and is caused by circulating autoantibodies and pathological T helper cells. Regulation of B-cell function and the T-cell network may be a potential therapeutic strategy for MG. MicroRNAs (miRNAs) have emerged as potential biomarkers in immune disorders due to their critical roles in various immune cells and multiple inflammatory diseases. Aberrant miR-146a signal activation has been reported in autoimmune diseases, but a detailed exploration of the relationship between miR-146a and MG is still necessary. Using an experimental autoimmune myasthenia gravis (EAMG) rat model, we observed that miR-146a was highly expressed in the spleen but expressed at low levels in the thymus and lymph nodes in EAMG rats. Additionally, miR-146a expression in T and B cells was also quite different. EAMG-specific Th17 and Treg cells had lower miR-146a levels, while EAMG-specific B cells had higher miR-146a levels, indicating that targeted intervention against miR-146a might have diametrically opposite effects. Metformin, a drug that was recently demonstrated to alleviate EAMG, may rescue the functions of both Th17 cells and B cells by reversing the expression of miR-146a. We also investigated the downstream target genes of miR-146a in both T and B cells using bioinformatics screening and qPCR. Taken together, our study identifies a complex role of miR-146a in the EAMG rat model, suggesting that more caution should be paid in targeting miR-146a for the treatment of MG.


Asunto(s)
Metformina , MicroARNs , Miastenia Gravis Autoinmune Experimental , Receptores Colinérgicos/inmunología , Animales , Autoanticuerpos , Linfocitos B , Biomarcadores , Metformina/farmacología , Metformina/uso terapéutico , MicroARNs/genética , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/genética , Ratas , Células Th17
11.
Front Immunol ; 13: 809106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720339

RESUMEN

Background and Aims: Myasthenia gravis (MG) is a T-cell dependent antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen, comprising several T and B cell auto-epitopes. We hypothesized that an efficacious drug candidate for antigen-specific therapy in MG should comprise a broad range of these auto-epitopes and be administered in a noninflammatory and tolerogenic context. Methods: We used a soluble mutated form of the extracellular domain of the α1 chain of the AChR (α1-ECDm), which represents the major portion of auto-epitopes involved in MG, and investigated, in a well-characterized rat model of experimental autoimmune myasthenia gravis (EAMG) whether its intravenous administration could safely and efficiently treat the autoimmune disease. Results: We demonstrated that intravenous administration of α1-ECDm abrogates established EAMG, in a dose and time dependent manner, as assessed by clinical symptoms, body weight, and compound muscle action potential (CMAP) decrement. Importantly, the effect was more pronounced compared to drugs representing current standard of care for MG. The protein had a short plasma half-life, most of what could be recovered was sequestered in the liver, kidneys and spleen. Further, we did not observe any signs of toxicity or intolerability in animals treated with α1-ECDm. Conclusion: We conclude that intravenous treatment with α1-ECDm is safe and effective in suppressing EAMG. α1-ECDm is in preclinical development as a promising new drug candidate for MG.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Receptores Nicotínicos , Animales , Epítopos de Linfocito B , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Ratas , Receptores Colinérgicos , Receptores Nicotínicos/genética , Linfocitos T
12.
Int Immunopharmacol ; 96: 107511, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33915521

RESUMEN

Fingolimod (FTY720), a sphingosine 1-phosphate (S1P) receptor antagonist, possesses potent immunomodulatory activity via lymphocyte homing. The effects of FTY720 have been widely studied in various T-cell-mediated autoimmune diseases, while the immunomodulatory effects on experimental autoimmune myasthenia gravis (EAMG), a typical disease model for antibody-mediated autoimmunity, remain elusive. In the present study, FTY720 was administered to EAMG rats as prophylaxis. The clinical scores were recorded every other day, and serum antibodies at different time points were measured by enzyme-linked immunosorbent assay (ELISA). The immune cell subsets in the spleen, bone marrow, circulation, and thymus were determined by flow cytometry. The prophylactic administration alleviated EAMG symptoms by reducing the level of serum antibodies IgG and its isotype IgG2b on days 30 and 46 post immunization, as well as IgG and Ig kappa antibody-secreting cells in the spleen and bone marrow. The mitigated humoral immune response can be attributed to the decreased dendritic cells, follicular T help cells (Tfh) and Tfh subsets (Tfh1, Tfh2, and Tfh17), and T helper cell subsets (Th1, Th2, and Th17) in the spleen. The promotion of lymphocyte homing and inhibition of thymocyte egress contribute to the effects of FTY720 on these effector T cell subsets. Overall, the prophylactic administration of FTY720 ameliorated EAMG partially by regulating humoral immune response,suggesting that FTY720 could be part of a pharmacological strategy for managing myasthenia gravis.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Células Dendríticas/inmunología , Clorhidrato de Fingolimod/uso terapéutico , Inmunosupresores/uso terapéutico , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis/tratamiento farmacológico , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Autoantígenos/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Humoral , Péptidos/inmunología , Ratas , Ratas Endogámicas Lew , Receptores Colinérgicos/inmunología
13.
Int Immunopharmacol ; 93: 107434, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33556668

RESUMEN

Leflunomide, an immunosuppressive disease-modifying anti-rheumatic drug (DMARD), is widely used in the treatment of rheumatoid arthritis (RA), psoriatic arthritis (PA) as well as multiple sclerosis. However, its role in myasthenia gravis (MG) has not yet been clearly explored. Here, we investigated the effect of leflunomide on experimental autoimmune myasthenia gravis (EAMG) in vivo and in vitro. The results demonstrated that leflunomide alleviated the severity of EAMG associated with reduced serum total anti-acetylcholine receptor (AChR) IgG levels. During the development of EAMG, the increase of follicular helper T cells (Tfh) 1, Tfh 17 cells and decrease of follicular regulatory T cells (Tfr) were reversely altered after leflunomide administration. Our work further found that leflunomide might inhibit Tfh cells through the IL-21/STAT3 pathway to reduce the secretion of antibodies by B cells. In addition, leflunomide rebuilt the balance of Th1/Th2/Th17/Treg subsets. These results suggested that leflunomide ameliorated EAMG severity by regulating humoral immune responses and Th cell profiles thereby providing a novel effective treatment strategy for MG.


Asunto(s)
Centro Germinal/inmunología , Inmunosupresores/uso terapéutico , Leflunamida/uso terapéutico , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Linfocitos T Colaboradores-Inductores/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Humanos , Inmunidad Humoral/efectos de los fármacos , Interleucinas/metabolismo , Ratas , Ratas Endogámicas Lew , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Balance Th1 - Th2/efectos de los fármacos
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(1): 24-30, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33441225

RESUMEN

Objective To study the therapeutic effect of rapamycin (RAPA) on experimental autoimmune myasthenia gravis (EAMG) rats and to explore the related immune mechanisms. Methods The mouse-derived acetylcholine receptor alpha subunit 97-116 peptide (R97-116) was used to immunize Lewis rats to establish an EAMG rat model. The rats were randomly divided into three groups: complete Freund's adjuvant control group (CFA group), EAMG model control group, and RAPA treatment group [1 mg/(kg.d)]. The Lennon muscle strength scoring scale was used to evaluate rats' clinical symptoms in each group once every two days, and their body mass was recorded. ELISA was performed to detect the level of anti-R97-116 antibodies in the peripheral blood of rats. Flow cytometry was used to detect the numbers of Th17 cells and regulatory T cells (Tregs) in rat splenocytes. Splenocytes were stimulated with 5 µg/mL concanavalin A (ConA), 10 µg/mL R97-116 and RPMI1640 medium, and the proliferation activity of rat splenocytes was tested by CCK-8 assay. Results RAPA treatment significantly improved the body mass and clinical scores in EAMG rats. Compared with the CFA group, the number of Th17 cells in the spleen of the EAMG group increased, and the number of Tregs decreased. Compared with the EAMG group, the number of Th17 cells in the spleen of RAPA-treated rats significantly dropped, the number of Tregs went up, and the level of anti-R97-116 antibodies in the serum went down. RAPA treatment inhibited the proliferation of lymphocytes induced by RPMI1640 medium, R97-116, and ConA stimulation. Conclusion RAPA may alleviate the clinical symptoms of EAMG rats by down-regulating the ratio of Th17 cells/Tregs.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Linfocitos T Reguladores , Animales , Ratones , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Ratas , Ratas Endogámicas Lew , Sirolimus/farmacología , Células Th17
15.
Immunol Invest ; 50(6): 671-684, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597289

RESUMEN

Antigen-specific immune responses are crucially involved in both multiple sclerosis (MS) and myasthenia gravis (MG). Teriflunomide is an immunomodulatory agent approved for treatment of MS through inhibition of lymphocyte proliferation. MG associated with muscle-specific tyrosine kinase (MuSK) antibodies often manifests with a severe disease course, prompting development of effective treatment methods. To evaluate whether teriflunomide treatment may ameliorate MuSK-autoimmunity, experimental autoimmune MG (EAMG) was induced by immunizing C57BL/6 (B6) mice three times with MuSK in complete Freund's adjuvant (CFA) (n = 17). MuSK-immunized mice were treated daily with teriflunomide (n = 8) or PBS (n = 9) starting from the third immunization (week 8) to termination (week 14). Clinical severity of EAMG was monitored. Immunological alterations were evaluated by measurement of anti-MuSK IgG, neuromuscular junction deposits, and flow cytometric analysis of lymph node cells. In MS patients under teriflunomide treatment, the peripheral blood B cell subset profile was analyzed. B6 mice treated with teriflunomide displayed relatively preserved body weight, lower EAMG prevalence, reduced average clinical grades, higher inverted screen scores, diminished anti-MuSK antibody and NMJ deposit levels. Amelioration of EAMG findings was associated with reduced memory B cell ratios in the lymph nodes. Similarly, MS patients under teriflunomide treatment showed reduced memory B cell, plasma cell, and plasmablast ratios. Teriflunomide treatment has effectively ameliorated MuSK-autoimmunity and thus may putatively be used in long-term management of MuSK-MG as an auxiliary treatment method. Teriflunomide appears to exert beneficial effects through inhibition of effector B cells.


Asunto(s)
Subgrupos de Linfocitos B/efectos de los fármacos , Crotonatos/administración & dosificación , Hidroxibutiratos/administración & dosificación , Esclerosis Múltiple/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Nitrilos/administración & dosificación , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Toluidinas/administración & dosificación , Adulto , Animales , Subgrupos de Linfocitos B/inmunología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/inmunología , Miastenia Gravis Autoinmune Experimental/sangre , Miastenia Gravis Autoinmune Experimental/diagnóstico , Miastenia Gravis Autoinmune Experimental/inmunología , Proteínas Tirosina Quinasas Receptoras/administración & dosificación , Receptores Colinérgicos/administración & dosificación , Resultado del Tratamiento
16.
Biomed Pharmacother ; 129: 110482, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768964

RESUMEN

The Qiangji Jianli Decoction (QJJLD) is an effective Chinese medicine formula for treating Myasthenia gravis (MG) in the clinic. QJJLD has been proven to regulate mitochondrial fusion and fission of skeletal muscle in myasthenia gravis. In this study, we investigated whether QJJLD plays a therapeutic role in regulating mitochondrial biogenesis in MG and explored the underlying mechanism. Rats were experimentally induced to establish autoimmune myasthenia gravis (EAMG) by subcutaneous immunization with R97-116 peptides. The treatment groups were administered three different dosages of QJJLD respectively. After the intervention of QJJLD, the pathological changes of gastrocnemius muscle in MG rats were significantly improved; SOD, GSH-Px, Na+-K+ ATPase and Ca2+-Mg2+ ATPase activities were increased; and MDA content was decreased in the gastrocnemius muscle. Moreover, AMPK, p38MAPK, PGC-1α, NRF-1, Tfam and COX IV mRNA and protein expression levels were also reversed by QJJLD. These results implied that QJJLD may provide a potential therapeutic strategy through promoting mitochondrial biogenesis to alleviate MG via activating the AMPK/PGC-1α signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Medicamentos Herbarios Chinos/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Femenino , Regulación de la Expresión Génica , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/genética , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/enzimología , Músculo Esquelético/ultraestructura , Miastenia Gravis Autoinmune Experimental/enzimología , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/patología , Fragmentos de Péptidos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas Endogámicas Lew , Receptores Colinérgicos , Transducción de Señal
17.
Med Sci Monit ; 26: e919150, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32052794

RESUMEN

BACKGROUND Myasthenia gravis (MG) is a progressive autoimmune disorder caused by the production of antibodies directed against acetylcholine receptors (AChRs), resulting in muscle weakness and fatigue. This study aimed to explore the effect and mechanism of grilled nux vomica (GNV) in experimental autoimmune myasthenia gravis (EAMG) rats. MATERIAL AND METHODS Rat 97-116 peptides were used to mediate disease in the EAMG model in SPF female Lewis rats. The treatment groups received grilled nux vomica (75 mg/kg, 150 mg/kg, and 225 mg/kg). The autoantibody and inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). RNA profiling was performed on high-dose and model group rats. Profiling results and TLR-4/NF-kappaB signaling were validated by q-PCR and Western blot analysis. RESULTS The results showed that GNV could attenuate the symptoms of EAMG rats. There was a decreased level of AChR-ab, IFN-γ, TNF-alpha, IL-2, IL-4, and IL-17 levels, and an increased level of TGF-ß1. In total, 235 differentially expressed genes (DEGs), consisting of 175 upregulated DEGs and 60 downregulated DEGs, were identified. Functional annotation demonstrated that DEGs were largely associated with leukocyte cell-cell adhesion, NF-kappa B signaling pathway, muscle contraction, and cardiac muscle contraction pathway. Rac2, Itgb2, Lcp2, Myl3, and Tnni1 were considered as hub genes with a higher degree value in the protein-protein interaction (PPI) network. The q-PCR and Western blot results of hub genes were consistent with RNA profiles. GNV treatment also significantly reduced the TLR-4 and NF-kappaB p65 protein expression in EAMG rats. CONCLUSIONS These results indicate that grilled nux vomica ameliorates EAMG by depressing the TLR-4/NF-kappaB signaling pathway, and hub genes may serve as potential targets for MG treatment.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Strychnos nux-vomica/química , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/patología , FN-kappa B/metabolismo , RNA-Seq , Ratas , Ratas Endogámicas Lew , Transducción de Señal/genética , Transducción de Señal/inmunología , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 4/metabolismo
18.
J Neuroimmunol ; 339: 577136, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31855721

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. Approximately 9% of MG patients have autoantibodies targeting the muscle specific kinase (MuSK), and are challenging therapeutically, since they often present with more severe symptoms. A useful therapy is plasmapheresis, but it is highly non-specific. Antigen-specific immunoadsorption would only remove the pathogenic autoantibodies, minimizing the possible side effects and maximizing the benefit. We used rats with human MuSK-induced experimental autoimmune MG to perform antigen-specific immunoadsorptions, and found it very effective, resulting in a dramatic autoantibody titer decrease, while immunoadsorbed, but not mock-treated, animals showed an significant improvement of their clinical symptoms. Overall, the procedure was efficient, supporting its application for MG treatment.


Asunto(s)
Autoanticuerpos/administración & dosificación , Antígenos de Histocompatibilidad Clase II/administración & dosificación , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Plasmaféresis/métodos , Proteínas Tirosina Quinasas Receptoras/administración & dosificación , Receptores Colinérgicos/administración & dosificación , Animales , Autoanticuerpos/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunización/métodos , Miastenia Gravis Autoinmune Experimental/inmunología , Ratas , Ratas Endogámicas Lew , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Resultado del Tratamiento
19.
Int Immunopharmacol ; 75: 105822, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31437793

RESUMEN

Metformin, the most widely used medicine for type 2 diabetes, displays anti-inflammatory functions via activating AMP-activated protein kinase (AMPK). Circulating autoantibodies and disequilibrium of helper T cells and regulatory T cells are pathological hallmarks of myasthenia gravis (MG). Rectify the imbalance of different T cell populations has become an important therapeutic strategy to treat MG. In this study, we assessed the effect of metformin on the development of autoimmunity using an experimental autoimmune myasthenia gravis (EAMG) rat model. We first provided evidence that oral administration of metformin attenuated the onset of EAMG. This effect was accompanied by a substantial decrease of circulating auto-antibody levels with no effect on blood glucose level. While metformin treatment in vitro showed little effect on inducible Treg, metformin strongly inhibited Th17 cell differentiation through the increase of reactive oxygen species and AMPK. Furthermore, an attenuation of antigen-induced IgG2b antibody production by two different doses of metformin was also observed in the AChR-specific recall response. In conclusion, the above results indicate that metformin may have therapeutic value for the clinical treatment of MG.


Asunto(s)
Antiinflamatorios/uso terapéutico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Antiinflamatorios/farmacología , Anticuerpos/sangre , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Glucemia/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratas Endogámicas Lew , Especies Reactivas de Oxígeno/inmunología , Receptores Colinérgicos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología
20.
Exp Neurol ; 317: 133-143, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30851266

RESUMEN

Myasthenia gravis is hallmarked by fatigable muscle weakness resulting from neuromuscular synapse dysfunction caused by IgG autoantibodies. The variant with muscle-specific kinase (MuSK) autoantibodies is characterized by prominent cranial and bulbar weakness and a high frequency of respiratory crises. The majority of MuSK MG patients requires long-term immunosuppressive treatment, but the result of these treatments is considered less satisfactory than in MG with acetylcholine receptor antibodies. Emergency treatments are more frequently needed, and many patients develop permanent facial weakness and nasal speech. Therefore, new treatment options would be welcome. The neonatal Fc receptor protects IgG from lysosomal breakdown, thus prolonging IgG serum half-life. Neonatal Fc receptor antagonism lowers serum IgG levels and thus may act therapeutically in autoantibody-mediated disorders. In MuSK MG, IgG4 anti-MuSK titres closely correlate with disease severity. We therefore tested efgartigimod (ARGX-113), a new neonatal Fc receptor blocker, in a mouse model for MuSK myasthenia gravis. This model involves 11 daily injections of purified IgG4 from MuSK myasthenia gravis patients, resulting in overt myasthenic muscle weakness and, consequently, body weight loss. Daily treatment with 0.5 mg efgartigimod, starting at the fifth passive transfer day, reduced the human IgG4 titres about 8-fold, despite continued daily injection. In muscle strength and fatigability tests, efgartigimod-treated myasthenic mice outperformed control myasthenic mice. Electromyography in calf muscles at endpoint demonstrated less myasthenic decrement of compound muscle action potentials in efgartigimod-treated mice. These substantial in vivo improvements of efgartigimod-treated MuSK MG mice following a limited drug exposure period were paralleled by a tendency of recovery at neuromuscular synaptic level (in various muscles), as demonstrated by ex vivo functional studies. These synaptic improvements may well become more explicit upon longer drug exposure. In conclusion, our study shows that efgartigimod has clear therapeutic potential in MuSK myasthenia gravis and forms an exciting candidate drug for many autoantibody-mediated neurological and other disorders.


Asunto(s)
Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/genética , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/genética , Proteínas Tirosina Quinasas Receptoras/genética , Potenciales de Acción , Animales , Electromiografía , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/sangre , Técnicas In Vitro , Ratones , Ratones Endogámicos NOD , Ratones SCID , Placa Motora/efectos de los fármacos , Contracción Muscular , Debilidad Muscular/etiología , Miastenia Gravis Autoinmune Experimental/complicaciones , Receptores Fc/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA