Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 846
1.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Article En, Zh | MEDLINE | ID: mdl-38764116

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Acupuncture Points , Acupuncture Therapy , Myeloid Differentiation Factor 88 , NF-kappa B , Rats, Sprague-Dawley , Rhinitis, Allergic , Signal Transduction , Toll-Like Receptor 4 , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Rats , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Male , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Female , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism
2.
Fish Shellfish Immunol ; 149: 109550, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593891

Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.


Fish Diseases , Fish Proteins , Immunity, Innate , Myeloid Differentiation Factor 88 , NF-kappa B , Perciformes , Signal Transduction , Vibrio Infections , Vibrio , Animals , Perciformes/immunology , Perciformes/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/immunology , NF-kappa B/genetics , Vibrio/physiology , Immunity, Innate/genetics , Fish Diseases/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Gene Expression Regulation/immunology , Lipopolysaccharides/pharmacology
3.
Int Immunopharmacol ; 113(Pt A): 109375, 2022 Dec.
Article En | MEDLINE | ID: mdl-36461592

BACKGROUND: Recent studies have uncovered that hyperuricemia (HUA) leads to cognitive deficits, which are accompanied by neuronal damage and neuroinflammation. Here, we aim to explore the role of methyltransferase-like 3 (METTL3) in HUA-mediated neuronal apoptosis and microglial inflammation. METHODS: A HUA mouse model was constructed. The spatial memory ability of the mice was assessed by the Morris water maze experiment (MWM), and neuronal apoptosis was analyzed by the TdT-mediated dUTP nick end labeling (TUNEL) assay. Besides, enzyme-linked immunosorbent assay (ELISA) was utilized to measure the contents of inflammatory factors (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (MDA, SOD, and CAT) in the serum of mice. In vitro, the mouse hippocampal neuron (HT22) and microglia (BV2) were treated with uric acid (UA). Flow cytometry was applied to analyze HT22 and BV2 cell apoptosis, and ELISA was conducted to observe neuroinflammation and oxidative stress. In addition, the expression of MyD88, p-NF-κB, NF-κB, NLRP3, ASC and Caspase1 was determined by Western blot. RESULTS: METTL3 and miR-124-3p were down-regulated, while the MyD88-NF-κB pathway was activated in the HUA mouse model. UA treatment induced neuronal apoptosis in HT22 and stimulated microglial activation in BV2. Overexpressing METTL3 alleviated HT22 neuronal apoptosis and resisted the release of inflammatory cytokines and oxidative stress mediators in BV2 cells. METTL3 repressed MyD88-NF-κB and NLRP3-ASC-Caspase1 inflammasome. In addition, METTL3 overexpression enhanced miR-124-3p expression, while METTL3 knockdown aggravated HT22 cell apoptosis and BV2 cell overactivation. CONCLUSION: METTL3 improves neuronal apoptosis and microglial activation in the HUA model by choking the MyD88/NF-κB pathway and up-regulating miR-124-3p.


Cognitive Dysfunction , Hyperuricemia , Inflammasomes , Methyltransferases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Caspase 1/genetics , Caspase 1/immunology , Cells, Cultured , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/immunology , Disease Models, Animal , Hyperuricemia/complications , Hyperuricemia/genetics , Hyperuricemia/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Methyltransferases/genetics , Methyltransferases/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Nervous System/drug effects , Nervous System/immunology , Nervous System/physiopathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , NF-kappa B , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Uric Acid/administration & dosage , Uric Acid/adverse effects , Uric Acid/pharmacology
4.
Front Immunol ; 13: 1034336, 2022.
Article En | MEDLINE | ID: mdl-36591307

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by chronic inflammation of exocrine tissue, resulting in loss of tears and saliva. Patients also experience many extra-glandular disease manifestations. Treatment for pSS is palliative, and there are currently no treatments available that target disease etiology. Previous studies in our lab demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-H2b (NOD.B10) pSS mouse model, although the way in which MyD88-dependent pathways become activated in disease remains unknown. Based on its importance in other autoimmune diseases, we hypothesized that TLR7 activation accelerates pSS pathogenesis. We administered the TLR7 agonist Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6 weeks. Parallel experiments were performed in age and sex-matched C57BL/10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy, splenomegaly, and expansion of TLR7-expressing B cells. Robust lymphocytic infiltration of exocrine tissues, kidney and lung was observed in pSS mice following treatment with Imq. TLR7 agonism also induced salivary hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice following Imq administration. Cervical lymph nodes from Imq-treated NOD.B10 animals demonstrated an increase in the percentage of activated/memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic disease and promotes expansion of T-bet-expressing B cells in pSS.


B-Lymphocytes , Myeloid Differentiation Factor 88 , Sjogren's Syndrome , Toll-Like Receptor 7 , Animals , Female , Mice , Adjuvants, Immunologic/pharmacology , Mice, Inbred C57BL , Mice, Inbred NOD , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Imiquimod/pharmacology
5.
PLoS Pathog ; 17(10): e1009970, 2021 10.
Article En | MEDLINE | ID: mdl-34597344

Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88.


CD4-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal/immunology , Interleukin-12 Subunit p40/immunology , Toxoplasmosis, Animal/immunology , Animals , Intestinal Mucosa/immunology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Toll-Like Receptors/deficiency , Toll-Like Receptors/immunology , Toxoplasma/immunology
6.
Front Immunol ; 12: 699702, 2021.
Article En | MEDLINE | ID: mdl-34512626

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses DNA and induces type I interferon (IFN) production. Whether and how the STING pathway crosstalk to other innate immune pathways during pathogen infection, however, remains unclear. Here, we showed that STING was needed for Streptococcus pneumoniae-induced late, not early, stage of lung IFNγ production. Using knockout mice, IFNγ reporter mice, intracellular cytokine staining, and adoptive cell transfer, we showed that cGAS-STING-dependent lung IFNγ production was independent of type I IFNs. Furthermore, STING expression in monocyte/monocyte-derived cells governed IFNγ production in the lung via the production of IL-12p70. Surprisingly, DNA stimulation alone could not induce IL-12p70 or IFNγ in Ly6Chi monocyte. The production of IFNγ required the activation by both DNA and heat-killed S. pneumococcus. Accordingly, MyD88-/- monocyte did not generate IL-12p70 or IFNγ. In summary, the cGAS-STING pathway synergizes with the MyD88 pathway in monocyte to promote late-stage lung IFNγ production during pulmonary pneumococcal infection.


Interferon-gamma/biosynthesis , Membrane Proteins/immunology , Monocytes/immunology , Myeloid Differentiation Factor 88/immunology , Nucleotidyltransferases/immunology , Pneumococcal Infections/immunology , Animals , Female , Lung/immunology , Lung/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Myeloid Differentiation Factor 88/metabolism , Nucleotidyltransferases/metabolism , Pneumococcal Infections/metabolism , Signal Transduction/immunology , Streptococcus pneumoniae
7.
Front Immunol ; 12: 692216, 2021.
Article En | MEDLINE | ID: mdl-34381449

Primary Sjögren's syndrome is an autoimmune disease that is predominantly seen in women. The disease is characterized by exocrine gland dysfunction in combination with serious systemic manifestations. At present, the causes of pSS are poorly understood. Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of pSS patients. A growing body of evidence indicates that inflammation mediated by Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both are implicated in autoimmunity. The objective of this study was to determine whether these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn and Dcn were similar among pSS mice and controls and tissue expression studies revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue, saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies directed against ECM components when compared to healthy controls. Further studies using sera derived from conditional knockout pSS mice demonstrated that generation of these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic compartment. Thus, this study demonstrates that ECM degradation may represent a novel source of chronic B cell activation in the context of pSS.


Autoantibodies/immunology , Extracellular Matrix/immunology , Myeloid Differentiation Factor 88/immunology , Sjogren's Syndrome/immunology , Animals , Biglycan/immunology , Decorin/immunology , Elastin/immunology , Female , Kidney/immunology , Lung/immunology , Mice, Transgenic , Myeloid Differentiation Factor 88/genetics , Saliva/immunology , Salivary Glands/immunology
8.
Mol Immunol ; 137: 94-104, 2021 09.
Article En | MEDLINE | ID: mdl-34242922

The signaling adapter MyD88 is critical for immune cell activation in response to viral or bacterial pathogens via several TLRs, IL-1ßR and IL-18R. However, the essential role of MyD88 during activations mediated by germline-encoded NK cell receptors (NKRs), such as Ly49H or NKG2D, has yet to be investigated. To define the NK cell-intrinsic function of MyD88, we generated a novel NK cell conditional knockout mouse for MyD88 (Myd88fl/flNcr1Cre/+). Phenotypic characterization of these mice demonstrated that MyD88 is dispensable for NK cell development and maturation. However, the MyD88-deficient NK cells exhibited significantly reduced cytotoxic potentials in vivo. In addition, the lack of MyD88 significantly reduced the NKG2D-mediated inflammatory cytokine production in vitro. Consistent with this, mice lacking MyD88 were unable to respond and clear MCMV infection. Transcriptomic analyses of splenic NK cells following MCMV infection revealed that inflammatory gene signatures were upregulated in Ly49H+. In contrast, Ly49H- NK cells have significant enrichment in G2M checkpoint genes, revealing distinct transcriptomic profiles of these subsets. Our results identify a central role for MyD88 in Ly49H-dependent gene signatures, including alterations in genes regulating proliferation in Ly49H+ NK cells. In summary, our study reveals a previously unknown function of MyD88 in Ly49H-dependent signaling and in vivo functions of NK cells.


Herpesviridae Infections/immunology , Killer Cells, Natural/immunology , Muromegalovirus/immunology , Myeloid Differentiation Factor 88/immunology , Animals , Cell Proliferation/physiology , Cytokines/immunology , Female , Inflammation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/immunology , Receptors, Natural Killer Cell/immunology , Signal Transduction/immunology , Transcriptome/immunology
9.
Fish Shellfish Immunol ; 115: 150-159, 2021 Aug.
Article En | MEDLINE | ID: mdl-34146673

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that belongs to the secretin/glucagon/GHRH/VIP superfamily. Some of these molecules have antimicrobial activity and they are capable of stimulating the immune system. The present work studied the antibacterial and immunostimulatory activity of PACAP-38 from African catfish Clarias gariepinus against the Gram-negative bacterium Pseudomonas aeruginosa in an in vivo test. PACAP-38 improved antimicrobial activity of skin mucus molecules against P. aeruginosa. The peptide modulates the gene expression profile of TLR-1, TLR-5, MyD88, IL-1ß, TNF-ɑ, IL-8, pardaxin, hepcidin and G/C-type lysozymes in skin, spleen and head kidney. The influenced exerted depended on the time after infection and tissue analyzed. This study provides the first evidence of a link between PACAP and antimicrobial peptides hepcidin and pardaxin. Our results suggest further use of PACAP as antimicrobial agent that could potentially be used to control disease in aquaculture.


Anti-Infective Agents/immunology , Catfishes/genetics , Catfishes/immunology , Fish Proteins/genetics , Immunity, Innate/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Signal Transduction/genetics , Animals , Fish Proteins/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Pituitary Adenylate Cyclase-Activating Polypeptide/immunology , Signal Transduction/immunology , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/immunology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology
10.
Immunohorizons ; 5(5): 273-283, 2021 05 06.
Article En | MEDLINE | ID: mdl-33958388

Cystic fibrosis is associated with chronic Pseudomonas aeruginosa colonization and inflammation. The role of MyD88, the shared adapter protein of the proinflammatory TLR and IL-1R families, in chronic P. aeruginosa biofilm lung infection is unknown. We report that chronic lung infection with the clinical P. aeruginosa RP73 strain is associated with uncontrolled lung infection in complete MyD88-deficient mice with epithelial damage, inflammation, and rapid death. Then, we investigated whether alveolar or myeloid cells contribute to heightened sensitivity to infection. Using cell-specific, MyD88-deficient mice, we uncover that the MyD88 pathway in myeloid or alveolar epithelial cells is dispensable, suggesting that other cell types may control the high sensitivity of MyD88-deficient mice. By contrast, IL-1R1-deficient mice control chronic P. aeruginosa RP73 infection and IL-1ß Ab blockade did not reduce host resistance. Therefore, the IL-1R1/MyD88 pathway is not involved, but other IL-1R or TLR family members need to be investigated. Our data strongly suggest that IL-1 targeted neutralizing therapies used to treat inflammatory diseases in patients unlikely reduce host resistance to chronic P. aeruginosa infection.


Interleukin-1beta/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Receptors, Interleukin-1 Type I/immunology , Animals , Humans , Immunity, Innate , Interleukin-1beta/genetics , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Pseudomonas Infections/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction , Toll-Like Receptors/immunology
11.
Front Immunol ; 12: 641692, 2021.
Article En | MEDLINE | ID: mdl-34017329

Activating mutations of MYD88 (MYD88L265P being the far most frequent) are found in most cases of Waldenström macroglobulinemia (WM) as well as in various aggressive B-cell lymphoma entities with features of plasma cell (PC) differentiation, such as activated B-cell type diffuse large B-cell lymphoma (DLBCL). To understand how MYD88 activation exerts its transformation potential, we developed a new mouse model in which the MYD88L252P protein, the murine ortholog of human MYD88L265P, is continuously expressed in CD19 positive B-cells together with the Yellow Fluorescent Protein (Myd88L252P mice). In bone marrow, IgM B and plasma cells were expanded with a CD138 expression continuum from IgMhigh CD138low to IgMlow CD138high cells and the progressive loss of the B220 marker. Serum protein electrophoresis (SPE) longitudinal analysis of 40 Myd88L252P mice (16 to 56 weeks old) demonstrated that ageing was first associated with serum polyclonal hyper gammaglobulinemia (hyper Ig) and followed by a monoclonal immunoglobulin (Ig) peak related to a progressive increase in IgM serum levels. All Myd88L252P mice exhibited spleen enlargement which was directly correlated with the SPE profile and was maximal for monoclonal Ig peaks. Myd88L252P mice exhibited very early increased IgM PC differentiation. Most likely due to an early increase in the Ki67 proliferation index, IgM lymphoplasmacytic (LP) and plasma cells continuously expanded with age being first associated with hyper Ig and then with monoclonal Ig peak. This peak was consistently associated with a spleen LP-like B-cell lymphoma. Clonal expression of both membrane and secreted µ chain isoforms was demonstrated at the mRNA level by high throughput sequencing. The Myd88L252P tumor transcriptomic signature identified both proliferation and canonical NF-κB p65/RelA activation. Comparison with MYD88L265P WM showed that Myd88L252P tumors also shared the typical lymphoplasmacytic transcriptomic signature of WM bone marrow purified tumor B-cells. Altogether these results demonstrate for the first time that continuous MYD88 activation is specifically associated with clonal transformation of differentiating IgM B-cells. Since MYD88L252P targets the IgM PC differentiation continuum, it provides an interesting preclinical model for development of new therapeutic approaches to both WM and aggressive MYD88 associated DLBCLs.


Cell Differentiation/immunology , Immunoglobulin M/immunology , Mutation, Missense , Myeloid Differentiation Factor 88/immunology , Neoplasm Proteins/immunology , Plasma Cells/immunology , Amino Acid Substitution , Animals , Cell Differentiation/genetics , Humans , Immunoglobulin M/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Transgenic , Myeloid Differentiation Factor 88/genetics , Neoplasm Proteins/genetics , Plasma Cells/pathology
12.
Front Immunol ; 12: 647019, 2021.
Article En | MEDLINE | ID: mdl-33995365

Tuberculosis can occur during any stage of Human Immunodeficiency virus 1 (HIV) -infection including times when CD4+ T cell numbers have reconstituted and viral replication suppressed. We have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic myeloid-derived suppressor cells (MDSC) persist in HIV-infected individuals on combined anti-retroviral therapy (cART) and with virologic suppression. The response of MDSC to Mycobacterium tuberculosis (Mtb) is not known. In this study, we compared the anti-mycobacterial activity of MDSC isolated from HIV -infected individuals on cART with virologic suppression (HIV MDSC) and HIV-uninfected healthy controls (HIV (-) MDSC). Compared to HIV (-) MDSC, HIV MDSC produced significantly less quantities of anti-mycobacterial cytokines IL-12p70 and TNFα, and reactive oxygen species when cultured with infectious Mtb or Mtb antigens. Furthermore, HIV MDSC showed changes in the Toll-like receptor and IL-27 signaling, including reduced expression of MyD88 and higher levels of IL-27. Neutralizing IL-27 and overexpression of MyD88 synergistically controlled intracellular replication of Mtb in HIV MDSC. These results demonstrate that MDSC in fully suppressed HIV-infected individuals are permissive to Mtb and exhibit downregulated anti-mycobacterial innate immune activity through mechanisms involving IL-27 and TLR signaling. Our findings suggest MDSC as novel mediators of tuberculosis in HIV-Mtb co-infected individuals with virologic suppression.


HIV Infections/immunology , Immunity, Innate/immunology , Monocytes/immunology , Mycobacterium tuberculosis/immunology , Myeloid-Derived Suppressor Cells/immunology , Antiviral Agents/therapeutic use , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Cytokines/immunology , Cytokines/metabolism , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/physiology , Humans , Interleukin-27/immunology , Interleukin-27/metabolism , Monocytes/microbiology , Monocytes/virology , Mycobacterium tuberculosis/physiology , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid-Derived Suppressor Cells/microbiology , Myeloid-Derived Suppressor Cells/virology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology
13.
Immunol Res ; 69(2): 117-128, 2021 04.
Article En | MEDLINE | ID: mdl-33834387

The continuous emergence of infectious pathogens along with antimicrobial resistance creates a need for an alternative approach to treat infectious diseases. Targeting host factor(s) which are critically involved in immune signaling pathways for modulation of host immunity offers to treat a broad range of infectious diseases. Upon pathogen-associated ligands binding to the Toll-like/ IL-1R family, and other cellular receptors, followed by recruitment of intracellular signaling adaptor proteins, primarily MyD88, trigger the innate immune responses. But activation of host innate immunity strongly depends on the correct function of MyD88 which is tightly regulated. Dysregulation of MyD88 may cause an imbalance that culminates to a wide range of inflammation-associated syndromes and diseases. Furthermore, recent reports also describe that MyD88 upregulation with many viral infections is linked to decreased antiviral type I IFN response, and MyD88-deficient mice showed an increase in survivability. These reports suggest that MyD88 is also negatively involved via MyD88-independent pathways of immune signaling for antiviral type I IFN response. Because of its expanding role in controlling host immune signaling pathways, MyD88 has been recognized as a potential drug target in a broader drug discovery paradigm. Targeting BB-loop of MyD88, small molecule inhibitors were designed by structure-based approach which by blocking TIR-TIR domain homo-dimerization have shown promising therapeutic efficacy in attenuating MyD88-mediated inflammatory impact, and increased antiviral type I IFN response in experimental mouse model of diseases. In this review, we highlight the reports on MyD88-linked immune response and MyD88-targeted therapeutic approach with underlying mechanisms for controlling inflammation and antiviral type I IFN response. HIGHLIGHTS: • Host innate immunity is activated upon PAMPs binding to PRRs followed by immune signaling through TIR domain-containing adaptor proteins mainly MyD88. • Structure-based approach led to develop small-molecule inhibitors which block TIR domain homodimerization of MyD88 and showed therapeutic efficacy in limiting severe inflammation-associated impact in mice. • Therapeutic intervention of MyD88 also showed an increase in antiviral effect with strong type I IFN signaling linked to increased phosphorylation of IRFs via MyD88-independent pathway. • MyD88 inhibitors might be potentially useful as a small-molecule therapeutics for modulation of host immunity against inflammatory diseases and antiviral therapy. • However, prior clinical use of more in-depth efforts should be focused for suitability of the approach in deploying to complex diseases including COPD and COVID-19 in limiting inflammation-associated syndrome to infection.


Drug Delivery Systems , Immunity, Innate/drug effects , Myeloid Differentiation Factor 88 , Virus Diseases , Animals , Disease Models, Animal , Humans , Mice , Myeloid Differentiation Factor 88/antagonists & inhibitors , Myeloid Differentiation Factor 88/immunology , Virus Diseases/drug therapy , Virus Diseases/immunology
14.
JCI Insight ; 6(7)2021 04 08.
Article En | MEDLINE | ID: mdl-33690222

Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared with needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 inflammasome, and stimulate IL-1ß release despite their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the microfractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination.


Drug Delivery Systems/methods , Immunity, Innate/immunology , Immunogenicity, Vaccine/immunology , Influenza Vaccines/administration & dosage , Animals , Dendritic Cells/drug effects , Dendritic Cells/immunology , Inflammasomes/drug effects , Inflammasomes/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Interleukin-1beta/metabolism , Lasers , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Ovalbumin/immunology , Ovalbumin/pharmacology , Th2 Cells/immunology
15.
Anim Sci J ; 92(1): e13541, 2021.
Article En | MEDLINE | ID: mdl-33728713

Toll-like receptors (TLRs) participate in regulation of adaptive immune responses, and lymph nodes play key roles in the initiation of immune responses. There is a tolerance to the allogenic fetus during pregnancy, but it is unclear that expression of TLR signaling is in ovine lymph node during early pregnancy. In this study, lymph nodes were sampled from day 16 of nonpregnant ewes and days 13, 16, and 25 of pregnant ewes, and the expressions of TLR family (TLR2, TLR3, TLR4, TLR5 and TLR9), adaptor proteins, including myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), and interleukin-1-receptor-associated kinase 1 (IRAK1), were analyzed through real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry analysis. The results showed that mRNA and protein levels of TLR2, TLR3, TLR4, TRAF6, and MyD88 were upregulated in the maternal lymph node, but TLR5, TLR9, and IRAK1 were downregulated during early pregnancy. In addition, MyD88 protein was located in the subcapsular sinus and lymph sinuses. Therefore, it is suggested that early pregnancy induces changes in TLR signaling in maternal lymph node, which may be involved in regulation of maternal immune responses in sheep.


Lymph Nodes/immunology , Pregnancy, Animal/immunology , Sheep/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Animals , Down-Regulation/genetics , Down-Regulation/immunology , Female , Fetus/immunology , Gene Expression , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , TNF Receptor-Associated Factor 6/immunology , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptors/metabolism , Up-Regulation/genetics , Up-Regulation/immunology
16.
Int J Biol Macromol ; 178: 492-503, 2021 May 01.
Article En | MEDLINE | ID: mdl-33647335

Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein for Toll-like receptor (TLR)-mediated signaling pathways and plays an important role in immune response. In this study, the full-length cDNA of MyD88 from Macrobrachium rosenbergii (MRMyD88) was cloned. The MRMyD88 cDNA is 1758 bp long and contains a 1398-bp open reading frame. Multiple sequence alignment and phylogenetic analysis revealed that the amino acid sequence of MRMyD88 shared high identity with the known MyD88 proteins. The MRMyD88 mRNA was widely expressed in all examined tissues, with highest level in intestine, followed by gonad and pleopod. Furthermore, the MRMyD88 promoter region, spanning 1622 bp, contains several transcription factor-binding sites, including nine GATA-1 box motifs. Electrophoretic mobility shift assay showed that Gfi-1, SRF, and Oct-1 bind to the upstream region of MRMyD88. Additionally, the results showed that the expression levels of TLR1, TLR2 and TLR3 were different in response to Vibrio anguillarum, Lactobacillus plantarum and Aeromonas hydrophila infections. However, these bacteria significantly increased the expression levels of MyD88 and prophenoloxidase. These data suggest that the TLR-mediated signaling pathway is MyD88-dependent in response to pathogenic and probiotic bacteria in M. rosenbergii.


Arthropod Proteins , Myeloid Differentiation Factor 88 , Palaemonidae , Vibrio Infections , Vibrio/immunology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Palaemonidae/genetics , Palaemonidae/immunology , Palaemonidae/microbiology , Vibrio Infections/genetics , Vibrio Infections/immunology
17.
Virulence ; 12(1): 704-722, 2021 12.
Article En | MEDLINE | ID: mdl-33517839

Toll-like receptors (TLRs) are essential for the protection of the host from pathogen infections by initiating the integration of contextual cues to regulate inflammation and immunity. However, without tightly controlled immune responses, the host will be subjected to detrimental outcomes. Therefore, it is important to balance the positive and negative regulations of TLRs to eliminate pathogen infection, yet avert harmful immunological consequences. This study revealed a distinct mechanism underlying the regulation of the TLR network. The expression of sex-determining region Y-box 4 (Sox4) is induced by virus infection in viral infected patients and cultured cells, which subsequently represses the TLR signaling network to facilitate viral replication at multiple levels by a distinct mechanism. Briefly, Sox4 inhibits the production of myeloid differentiation primary response gene 88 (MyD88) and most of the TLRs by binding to their promoters to attenuate gene transcription. In addition, Sox4 blocks the activities of the TLR/MyD88/IRAK4/TAK1 and TLR/TRIF/TRAF3/TBK1 pathways by repressing their key components. Moreover, Sox4 represses the activation of the nuclear factor kappa-B (NF-κB) through interacting with IKKα/α, and attenuates NF-kB and IFN regulatory factors 3/7 (IRF3/7) abundances by promoting protein degradation. All these contributed to the down-regulation of interferons (IFNs) and IFN-stimulated gene (ISG) expression, leading to facilitate the viral replications. Therefore, we reveal a distinct mechanism by which viral pathogens evade host innate immunity and discover a key regulator in host defense.


Immunity, Innate/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/immunology , Signal Transduction/immunology , Toll-Like Receptors/metabolism , Viruses/immunology , Enterovirus A, Human/immunology , Enterovirus A, Human/pathogenicity , Hep G2 Cells , Humans , Immunity, Innate/immunology , Influenza A virus/immunology , Influenza A virus/pathogenicity , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Myeloid Differentiation Factor 88/antagonists & inhibitors , Myeloid Differentiation Factor 88/immunology , Signal Transduction/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Virus Replication , Viruses/pathogenicity
18.
Inflamm Res ; 70(3): 285-296, 2021 Mar.
Article En | MEDLINE | ID: mdl-33507312

OBJECTIVE: microRNAs (miRNAs) play critical roles in embryogenesis, cell differentiation and the pathogenesis of several human diseases, including systemic lupus erythematosus (SLE). Toll-like receptors (TLRs) are also known to exert crucial functions in the immune response activation occurring in the pathogenesis of autoimmune diseases like SLE. Herein, the current study aimed to explore the potential role of miR-152-3p in TLR-mediated inflammatory response in SLE. METHODS: We determined the miR-152-3p expression profiles in CD4+ T cells and peripheral blood mononuclear cells (PBMCs) harvested from patients with SLE and healthy controls, and analyzed the correlation between miR-152-3p expression and clinicopathological parameters. CD70 and CD40L expression patterns in CD4+ T cells were assessed by RT-qPCR and flow cytometry. ChIP was adopted to determine the enrichment of DNA methyltransferase 1 (DNMT1) in the promoter region of myeloid differentiation factor 88 (MyD88). RESULTS: The obtained findings revealed that miR-152-3p was highly-expressed in CD4+ T cells and PBMCs of patients with SLE, and this high expression was associated with facial erythema, joint pain, double-stranded DNA, and IgG antibody. DNMT1 could be enriched in the MyD88 promoter, and miR-152-3p inhibited the methylation of MyD88 by targeting DNMT1. We also found that silencing miR-152-3p inhibited MyD88 expression not only to repress the autoreactivity of CD4+ T cells and but also to restrain their cellular inflammation, which were also validated in vivo. CONCLUSION: Our study suggests that miR-152-3p promotes TLR-mediated inflammatory response in CD4+ T cells by regulating the DNMT1/MyD88 signaling pathway, which highlights novel anti-inflammatory target for SLE treatment.


Lupus Erythematosus, Systemic/genetics , MicroRNAs , Adolescent , Adult , Aged , Animals , Antibodies, Anti-Idiotypic/blood , Antibodies, Antinuclear/blood , Arthralgia/genetics , Arthralgia/immunology , Child , Cytokines/immunology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/immunology , Demethylation , Erythema/genetics , Erythema/immunology , Face , Female , Humans , Inflammation/genetics , Inflammation/immunology , Leukocytes, Mononuclear/immunology , Lupus Erythematosus, Systemic/immunology , Male , Mice, Inbred MRL lpr , Middle Aged , Myeloid Differentiation Factor 88/immunology , Toll-Like Receptors/immunology , Young Adult
19.
Int J Biol Macromol ; 172: 309-320, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33454323

Ribonuclease 1 (RNase1) is a vertebrate-specific enzyme that mainly performs digestive activity in herbivorous mammals. Here we used bacterial viability assays to explore its antimicrobial activity in blunt snout bream (Megalobrama amblycephala). The results showed that Ma-RNase1 rapidly killed Gram-negative and Gram-positive bacteria at micromolar concentrations. Ma-RNase1 increased the permeability of bacterial outer and inner membranes, thus reducing the integrity of bacterial cell wall and membrane. Moreover, Ma-RNase1 effectively counteracted the tissue damage and apoptosis caused by Aeromonas hydrophila infection. Quantitative real-time PCR and immunoblot analysis indicated that RNase1 mRNA and protein were up-regulated in the kidney and gut during infection. Furthermore, A. hydrophila infection significantly induced Tnf-α and Il-1ß mRNA expression in liver, but not in the RNase1 pre-treatment group. In addition, a significant increase in the expression of immune-related genes (Nf-κb and Tlr4) was found in liver, kidney and gut of A. hydrophila-infected fish, while a decrease in Myd88 and Tlr4 levels was found in liver, spleen, kidney and gut in the group pre-treated with RNase1. Collectively, these data suggest that Ma-RNase1 has antimicrobial function both in vitro and in vivo, and contributes to the protective effect and immune defense of blunt snout bream.


Aeromonas hydrophila/immunology , Cyprinidae/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Gram-Negative Bacterial Infections/genetics , Ribonucleases/genetics , Aeromonas hydrophila/growth & development , Aeromonas hydrophila/pathogenicity , Animals , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane Permeability , Cyprinidae/immunology , Cyprinidae/microbiology , Disease Resistance/genetics , Disease Resistance/immunology , Fish Diseases/enzymology , Fish Diseases/immunology , Fish Diseases/pathology , Fish Proteins/immunology , Gene Expression Regulation , Gram-Negative Bacterial Infections/enzymology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/pathology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Intestines/immunology , Intestines/microbiology , Kidney/immunology , Kidney/microbiology , Liver/immunology , Liver/microbiology , Microbial Viability , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/genetics , NF-kappa B/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Ribonucleases/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
20.
Cell Death Dis ; 12(1): 34, 2021 01 04.
Article En | MEDLINE | ID: mdl-33414473

Host immune control plays a pivotal role in resolving primary hepatitis-B-virus (HBV) infections. The complex interaction between HBV and host immune cells, however, remains unclear. In this study, the transcriptional profiling of specimens from animals infected with woodchuck hepatitis virus (WHV) indicated TLR2 mRNA accumulation as most strongly impacted during WHV infection resolution as compared to other mRNAs. Analysis of blood transcriptional modules demonstrated that monocytes and B-cells were the predominantly activated cell types in animals that showed resolution of infection, which was similar to the response of TLR2-stimulated PBMCs. Further investigation of TLR2-stimulated B-cells pointed at interactions between activated TLR signaling, Akt-mTOR, and glucose metabolic pathways. Moreover, analysis of B-cells from Tlr2-/-, Trif-/-, Myd88-/-, and Trif/Myd88-/- mice challenged with HBV particles indicated B-cell function and glucose metabolism alterations is TLR2-MyD88-mTOR axis dependent. Overall, our study implicates B-cell TLR2 activation in HBV infection resolution.


B-Lymphocytes/immunology , Hepatitis B Virus, Woodchuck/immunology , Hepatitis B/immunology , Host Microbial Interactions/immunology , Monocytes/immunology , Toll-Like Receptor 2/immunology , Animals , B-Lymphocytes/cytology , Cells, Cultured , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , TOR Serine-Threonine Kinases/immunology
...