Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Neuroimage Clin ; 39: 103459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37541097

RESUMEN

PURPOSE: Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD: Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS: We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION: Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Síndrome de Unverricht-Lundborg , Humanos , Síndrome de Unverricht-Lundborg/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Encéfalo , Epilepsias Mioclónicas Progresivas/metabolismo , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Cognición , Metaboloma , Colina/metabolismo , Ácido Aspártico , Creatina/metabolismo
2.
Parkinsonism Relat Disord ; 72: 44-48, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32105965

RESUMEN

INTRODUCTION: In 2011, a homozygous mutation in GOSR2 (c.430G > T; p. Gly144Trp) was reported as a novel cause of Progressive Myoclonus Epilepsy (PME) with early-onset ataxia. Interestingly, the ancestors of patients originate from countries bound to the North Sea, hence the condition was termed North Sea PME (NSPME). Until now, only 20 patients have been reported in literature. Here, we provide a detailed description of clinical and neurophysiological data of seventeen patients. METHODS: We collected clinical and neurophysiological data from the medical records of seventeen NSPME patients (5-46 years). In addition, we conducted an interview focused on factors influencing myoclonus severity. RESULTS: The core clinical features of NSPME are early-onset ataxia, myoclonus and seizures, with additionally areflexia and scoliosis. Factors such as fever, illness, heat, emotions, stress, noise and light (flashes) all exacerbated myoclonic jerks. Epilepsy severity ranged from the absence of or incidental clinical seizures to frequent daily seizures and status epilepticus. Some patients made use of a wheelchair during their first decade, whereas others still walked independently during their third decade. Neurophysiological features suggesting neuromuscular involvement in NSPME were variable, with findings ranging from indicative of sensory neuronopathy and anterior horn cell involvement to an isolated absent H-reflex. CONCLUSION: Although the sequence of symptoms is rather homogeneous, the severity of symptoms and rate of progression varied considerably among individual patients. Common triggers for myoclonus can be identified and myoclonus is difficult to treat; to what extent neuromuscular involvement contributes to the phenotype remains to be further elucidated.


Asunto(s)
Progresión de la Enfermedad , Epilepsias Mioclónicas Progresivas/fisiopatología , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Limitación de la Movilidad , Mutación Missense , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Conducción Nerviosa/fisiología , Mar del Norte , Proteínas Qb-SNARE , Índice de Severidad de la Enfermedad , Adulto Joven
3.
Mol Neurobiol ; 57(3): 1607-1621, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31808062

RESUMEN

Lafora disease (LD) is a rare, fatal form of progressive myoclonus epilepsy. The molecular basis of this devastating disease is still poorly understood, and no treatment is available yet, which leads to the death of the patients around 10 years from the onset of the first symptoms. The hallmark of LD is the accumulation of insoluble glycogen-like inclusions in the brain and peripheral tissues, as a consequence of altered glycogen homeostasis. In addition, other determinants in the pathophysiology of LD have been suggested, such as proteostasis impairment, with reduction in autophagy, and oxidative stress, among others. In order to gain a general view of the genes involved in the pathophysiology of LD, in this work, we have performed RNA-Seq transcriptome analyses of whole-brain tissue from two independent mouse models of the disease, namely Epm2a-/- and Epm2b-/- mice, at different times of age. Our results provide strong evidence for three major facts: first, in both models of LD, we found a common set of upregulated genes, most of them encoding mediators of inflammatory response; second, there was a progression with the age in the appearance of these inflammatory markers, starting at 3 months of age; and third, reactive glia was responsible for the expression of these inflammatory genes. These results clearly indicate that neuroinflammation is one of the most important traits to be considered in order to fully understand the pathophysiology of LD, and define reactive glia as novel therapeutic targets in the disease.


Asunto(s)
Factores de Edad , Enfermedad de Lafora/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Neuroglía/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glucógeno/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/genética , Ratones Noqueados , Epilepsias Mioclónicas Progresivas/genética , Estrés Oxidativo/fisiología
4.
Sci Rep ; 9(1): 16155, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695130

RESUMEN

Autophagy is a lysosomal degradation pathway that plays an essential role in neuronal homeostasis and is perturbed in many neurological diseases. Transcriptional downregulation of fat was previously observed in a Drosophila model of the polyglutamine disease Dentatorubral-pallidoluysian atrophy (DRPLA) and this was shown to be partially responsible for autophagy defects and neurodegeneration. However, it is still unclear whether a downregulation of mammalian Fat orthologues is associated with neurodegeneration in mice. We hereby show that all four Fat orthologues are transcriptionally downregulated in the cerebellum in a mouse model of DRPLA. To elucidate the possible roles of single Fat genes, this study concentrates on Fat3. This fat homologue is shown to be the most widely expressed in the brain. Conditional knockout (KO) of Fat3 in brains of adult mice was attempted using the inducible Thy1Cre(ERT2) SLICK H line. Behavioral and biochemical analysis revealed that mice with conditional KO of Fat3 in the brain display no abnormalities. This may be ascribed either to the limited efficiency of the KO strategy pursued or to the lack of effect of Fat3 KO on autophagy.


Asunto(s)
Ataxia/genética , Encéfalo/metabolismo , Cadherinas/genética , Modelos Animales de Enfermedad , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Epilepsias Mioclónicas Progresivas/genética , Proteínas del Tejido Nervioso/genética , Animales , Ataxia/metabolismo , Autofagia , Cadherinas/biosíntesis , Cadherinas/deficiencia , Cerebelo/metabolismo , Regulación hacia Abajo , Genes Sintéticos , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Vía de Señalización Hippo , Integrasas/genética , Ratones , Ratones Endogámicos , Ratones Noqueados , Epilepsias Mioclónicas Progresivas/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Bulbo Olfatorio/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Antígenos Thy-1/genética
5.
Stem Cell Res ; 40: 101551, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493762

RESUMEN

Dentato-Rubral-pallidoluysian atrophy (DRPLA) is a rare autosomal, dominant, progressive neurodegenerative disease that causes involuntary movements, mental and emotional problems. DRPLA is caused by a mutation in the ATN1 gene that encodes for an abnormal polyglutamine stretch in the atrophin-1 protein. DRPLA is most common in the Japanese population, where it has an estimated incidence of 2 to 7 per million people. This condition has also been seen in families from North America and Europe. We obtained a reprogrammed iPSC line from a Caucasian patient with a juvenile onset of the disease, carrying 64 CAG repeat expansion in the ATN1 gene.


Asunto(s)
Línea Celular/citología , Células Madre Pluripotentes Inducidas/citología , Epilepsias Mioclónicas Progresivas/fisiopatología , Proteínas del Tejido Nervioso/genética , Diferenciación Celular , Línea Celular/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Expansión de Repetición de Trinucleótido , Adulto Joven
6.
Stem Cell Res ; 39: 101512, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31374462

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is an incurable autosomal dominant disease caused by an expansion of a CAG repeats in ATN1 gene encoding atrophin 1 protein. Here we report the generation of IBCHi001-A, an induced pluripotent stem cell (iPSC) line derived from DRPLA patient fibroblasts using non-integrative reprogramming technology with OCT4, SOX2, cMYC and KLF4 reprogramming factors. The pluripotency of iPSC was confirmed by immunocytochemistry and PCR for pluripotency markers and by the ability to form three germ layers in vitro. The established iPSC line offers a useful resource to study the pathogenesis of DPRLA.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Epilepsias Mioclónicas Progresivas/metabolismo , Western Blotting , Células Cultivadas , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mycoplasma/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
7.
Neuroscience ; 420: 41-49, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30954670

RESUMEN

Successive fusion events between transport vesicles and their target membranes mediate trafficking of secreted, membrane- and organelle-localised proteins. During the initial steps of this process, termed the secretory pathway, COPII vesicles bud from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe neurological disorder characterised by ataxia, myoclonus and seizures in the absence of significant cognitive impairment. However, given the ubiquitous and essential function of ER-to-Golgi transport, why GOSR2 mutations cause neurological dysfunction and not lethality or a broader range of developmental defects has remained an enigma. Here we highlight new work that has shed light on this issue and incorporate insights into canonical and non-canonical secretory trafficking pathways in neurons to speculate as to the cellular and molecular mechanisms underlying GOSR2 PME. This article is part of a Special Issue entitled: SNARE proteins: a long journey of science in brain physiology and pathology: from molecular.


Asunto(s)
Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/fisiopatología , Transporte de Proteínas/genética , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Animales , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Mutación , Epilepsias Mioclónicas Progresivas/metabolismo , Neuronas/metabolismo , Neuronas/patología
8.
Neuroscientist ; 25(5): 512-520, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30614396

RESUMEN

Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Péptidos/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Péptidos/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
9.
Orphanet J Rare Dis ; 13(1): 121, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029679

RESUMEN

Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.


Asunto(s)
Lipogranulomatosis de Farber/metabolismo , Lipogranulomatosis de Farber/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Animales , Lipogranulomatosis de Farber/cirugía , Lipogranulomatosis de Farber/terapia , Humanos , Atrofia Muscular Espinal/cirugía , Atrofia Muscular Espinal/terapia , Epilepsias Mioclónicas Progresivas/cirugía , Epilepsias Mioclónicas Progresivas/terapia , Esfingolípidos/metabolismo
10.
Vet Pathol ; 55(4): 543-551, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29444631

RESUMEN

Canine Lafora disease (LD) is an autosomal recessive genetic disorder causing nonfatal structural epilepsy, mainly affecting miniature wirehaired dachshunds. Repeat expansion in the EPM2B gene causes a functional impairment of the ubiquitin ligase malin which regulates glycogen metabolism. Abnormally structured glycogen accumulates and develop polyglucosan bodies predominantly in the central nervous system. The authors performed a comprehensive clinical, genetic, and pathological study of 4 LD cases affecting miniature wirehaired dachshund dogs with EPM2B repeat expansions, with systemic distribution of polyglucosan bodies and accumulation of laforin and other functionally associated proteins in the polyglucosan bodies. Myoclonic seizures first appeared at 7-9 years of age, and the dogs died at 14-16 years of age. Immunohistochemistry for calbindin revealed that the polyglucosan bodies were located in the cell bodies and dendritic processes of Purkinje cells. Polyglucosan bodies were also positive for laforin, hsp70, α/ß-synuclein, ubiquitin, LC3, and p62. Laforin-positive polyglucosan bodies were located in neurofilament-positive neurons but not in GFAP-positive astrocytes. In nonneural tissues, periodic acid-Schiff (PAS)-positive polyglucosan bodies were observed in the heart, skeletal muscle, liver, apocrine sweat gland, and smooth muscle layer of the urinary bladder. In the skeletal muscle, polyglucosan bodies were observed only in type 1 fibers and not in type 2 fibers. The results indicate that although the repeat expansion of the EPM2B gene is specific to dogs, the immunohistochemical properties of polyglucosan body in canine LD are comparable to human LD. However, important phenotypic variations exist between the 2 species including the affected skeletal muscle fiber type.


Asunto(s)
Enfermedades de los Perros/patología , Glucanos/metabolismo , Enfermedad de Lafora/veterinaria , Epilepsias Mioclónicas Progresivas/metabolismo , Animales , Astrocitos/patología , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedades de los Perros/genética , Enfermedades de los Perros/metabolismo , Perros , Femenino , Glucanos/genética , Glucógeno/metabolismo , Humanos , Inmunohistoquímica/veterinaria , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/patología , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Epilepsias Mioclónicas Progresivas/genética , Neuronas/patología , Neuropatología , Complejo de la Endopetidasa Proteasomal , Ubiquitina
11.
Cell Rep ; 21(1): 97-109, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978487

RESUMEN

Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor) protein Membrin (encoded by the GOSR2 gene) cause progressive myoclonus epilepsy (PME). Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME.


Asunto(s)
Dendritas/metabolismo , Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Qb-SNARE/genética , Vías Secretoras/genética , Sinapsis/metabolismo , Animales , Dendritas/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Estudios de Asociación Genética , Aparato de Golgi/metabolismo , Humanos , Masculino , Fusión de Membrana , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Fenotipo , Cultivo Primario de Células , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sinapsis/patología , Adulto Joven
12.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688853

RESUMEN

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Asunto(s)
Predisposición Genética a la Enfermedad , Epilepsias Mioclónicas Progresivas/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Convulsiones/metabolismo , Adolescente , Animales , Encéfalo/fisiopatología , Niño , Femenino , Variación Genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Epilepsias Mioclónicas Progresivas/genética , Células 3T3 NIH , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsiones/genética , Adulto Joven
13.
J Neurol Sci ; 360: 121-4, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26723987

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is hereditary spinocerebellar degeneration presenting various symptoms in association with expansion of the CAG repeat in Atrophin-1 gene. The functional neuroimaging of DRPLA has been poorly investigated. The purpose of this study was to examine (18)F-fluorodeoxyglucose-positron emission tomography ((18)F-FDG-PET) findings of DRPLA. We retrospectively investigated the cases of 14 consecutive genetically confirmed DRPLA patients at our institute. Four juvenile-onset patients underwent (18)F-FDG-PET because of intractable seizures. Their (18)F-FDG-PET images, clinical profiles and MRI findings were evaluated. For quantitative comparison, 3 healthy volunteers also underwent (18)F-FDG-PET as controls. All four patients presented progressive myoclonus epilepsy without MRI abnormalities. Both the visual and quantitative assessments of their (18)F-FDG-PET findings demonstrated bistriatal hypometabolism in only the two preadolescent-onset patients with larger CAG repeat size, whereas the two other later-onset patients showed no hypometabolism in the striatum. Bistriatal glucose hypometabolism in preadolescent-onset DRPLA patients might reflect more severe degeneration. This finding could contribute to a better understanding of DRPLA.


Asunto(s)
Cuerpo Estriado/metabolismo , Glucosa/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Convulsiones/metabolismo , Adulto , Niño , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/patología , Femenino , Humanos , Masculino , Epilepsias Mioclónicas Progresivas/diagnóstico por imagen , Epilepsias Mioclónicas Progresivas/patología , Cintigrafía , Estudios Retrospectivos , Convulsiones/diagnóstico por imagen , Convulsiones/patología , Adulto Joven
14.
FASEB J ; 29(9): 3839-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26018676

RESUMEN

Acid ß-glucosidase (GCase), the enzyme deficient in Gaucher disease (GD), is transported to lysosomes by the lysosomal integral membrane protein (LIMP)-2. In humans, LIMP-2 deficiency leads to action myoclonus-renal failure (AMRF) syndrome. GD and AMRF syndrome share some clinical features. However, they are different from clinical and biochemical points of view, suggesting that the role of LIMP-2 in the targeting of GCase would be different in different tissues. Besides, the role of LIMP-2 in the uptake and trafficking of the human recombinant (hr)GCase used in the treatment of GD is unknown. Thus, we compared GCase activity and intracellular localization in immortalized lymphocytes, fibroblasts, and a neuronal model derived from multipotent adult stem cells, from a patient with AMRF syndrome, patients with GD, and control subjects. In fibroblasts and neuronlike cells, GCase targeting to the lysosomes is completely dependent on LIMP-2, whereas in blood cells, GCase is partially targeted to lysosomes by a LIMP-2-independent mechanism. Although hrGCase cellular uptake is independent of LIMP-2, its trafficking to the lysosomes is mediated by this receptor. These data provide new insights into the mechanisms involved in the intracellular trafficking of GCase and in the pathogeneses of GD and AMRF syndrome.


Asunto(s)
Células Madre Adultas/metabolismo , Fibroblastos/metabolismo , Glucosilceramidasa , Linfocitos/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Células Madre Multipotentes/metabolismo , Receptores Depuradores/metabolismo , Adulto , Células Madre Adultas/patología , Fibroblastos/patología , Glucosilceramidasa/farmacocinética , Glucosilceramidasa/farmacología , Humanos , Linfocitos/patología , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Células Madre Multipotentes/patología , Epilepsias Mioclónicas Progresivas/tratamiento farmacológico , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores Depuradores/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología
16.
Biochemistry ; 53(28): 4510-8, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24981774

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is a progressive neurodegenerative disorder that currently has no curative treatments. DRPLA is caused by an expansion of a CAG trinucleotide repeat region within the protein-encoding sequence of the atrophin-1 (ATN-1) gene. Inhibition of mutant ATN-1 protein expression is one strategy for treating DRPLA, and allele-selective gene silencing agents that block mutant expression over wild-type expression would be lead compounds for therapeutic development. Here we develop an assay for distinguishing mutant from wild-type ATN-1 protein by gel electrophoresis. We use this assay to evaluate duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) for allele-selective inhibition of ATN-1 protein expression. We observed potent and allele-selective inhibition by RNA duplexes that contain mismatched bases relative to the CAG target and have the potential to form miRNA-like complexes. ss-siRNAs that contained mismatches were as selective as mismatch-containing duplexes. We also report allele-selective inhibition by duplex RNAs containing unlocked nucleic acids or abasic substitutions, although selectivities are not as high. Five compounds that showed >8-fold allele selectivity for mutant ATN-1 were also selective for inhibiting the expression of two other trinucleotide repeat disease genes, ataxin-3 (ATXN-3) and huntingtin (HTT). These data demonstrate that the expanded trinucleotide repeat within ATN-1 mRNA is a potential target for compounds designed to achieve allele-selective inhibition of ATN-1 protein, and one agent may allow the targeting of multiple disease genes.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Mutagénesis Insercional , Proteínas del Tejido Nervioso/biosíntesis , ARN Bicatenario/metabolismo , Expansión de Repetición de Trinucleótido , Ataxina-3 , Línea Celular , Humanos , Proteína Huntingtina , MicroARNs/genética , MicroARNs/metabolismo , Epilepsias Mioclónicas Progresivas/tratamiento farmacológico , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética
17.
Ann Neurol ; 76(2): 206-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24782409

RESUMEN

OBJECTIVE: Alterations of sphingolipid metabolism are implicated in the pathogenesis of many neurodegenerative disorders. METHODS: We identified a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, in 4 siblings affected by a progressive disorder with myoclonic epilepsy and dementia. CerS1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. RESULTS: We demonstrated that the mutation decreases C18-ceramide levels. In addition, we showed that downregulation of CerS1 in a neuroblastoma cell line triggers ER stress response and induces proapoptotic pathways. INTERPRETATION: This study demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.


Asunto(s)
Ceramidas/biosíntesis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Argelia , Demencia/genética , Demencia/metabolismo , Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/genética , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Hermanos , Esfingosina N-Aciltransferasa/genética
18.
Mol Genet Metab ; 111(2): 84-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24389070

RESUMEN

Lysosomes require the presence of many specialized proteins to facilitate their roles in cellular maintenance. One such protein that has proven to be an important player in the lysosomal field is lysosomal integral membrane protein-2 (LIMP-2), encoded by the gene SCARB2. LIMP-2 is required for the normal biogenesis and maintenance of lysosomes and endosomes and has been identified as the specific receptor for glucocerebrosidase, the enzyme deficient in Gaucher disease. Research into LIMP-2 and the SCARB2 gene indicate that it may be a factor contributing to the clinical heterogeneity seen among patients with Gaucher disease. Mutations in SCARB2 have also been identified as the cause of action myoclonus renal failure (AMRF), and in some cases progressive myoclonic epilepsy. A total of 14 disease-causing SCARB2 mutations have been identified to date. The role of LIMP-2 in human pathology has expanded with its identification as a component of the intercalated disk in cardiac muscle and as a receptor for specific enteroviruses, two unanticipated findings that reaffirm the myriad roles of lysosomal proteins. Studies into the full impact of LIMP-2 deficiency and the LIMP2/glucocerebrosidase molecular pathway will lead to a better understanding of disease pathogenesis in Gaucher disease and AMRF, and to new insights into lysosomal processing, trafficking and function.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/deficiencia , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Epilepsias Mioclónicas Progresivas/metabolismo , Receptores Depuradores/metabolismo , Animales , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Expresión Génica , Heterogeneidad Genética , Glucosilceramidasa/genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/patología , Ratones , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/patología , Receptores Depuradores/genética , Transducción de Señal
19.
Biochim Biophys Acta ; 1834(12): 2591-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24063889

RESUMEN

Cystatin B (CSTB) is an anti-protease frequently mutated in progressive myoclonus epilepsy (EPM1), a devastating degenerative disease. This work shows that rat CSTB is an unstable protein that undergoes structural changes following the interaction with a chaperone, either prokaryotic or eukaryotic. Both the prokaryotic DnaK and eukaryotic HSP70 promote CSTB polymerization. Denaturated CSTB is polymerized by the chaperone alone. Native CSTB monomers are more stable than denatured monomers and require Cu(2+) for chaperone-dependent polymerization. Cu(2+) interacts with at least two conserved histidines, at positions 72 and 95 modifying the structure of native monomeric CSTB. Subsequently, CSTB becomes unstable and readily responds to the addition of DnaK or HSP70, generating polymers. This reaction depends strictly on the presence of this divalent metal ion and on the presence of one cysteine in the protein chain. The cysteine deletion mutant does not polymerize. We propose that Cu(2+) modifies the redox environment of the protein, allowing the oxidation of the cysteine residue of CSTB that triggers polymerization. These polymers are sensitive to reducing agents while polymers obtained from denatured CSTB monomers are DTT resistant. We propose that the Cu(2+)/HSP70 dependent polymers are physiological and functional in eukaryotic cells. Furthermore, while monomeric CSTB has anti-protease function, it seems likely that polymeric CSTB fulfils different function(s).


Asunto(s)
Cobre/metabolismo , Cistatina M/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mutación , Epilepsias Mioclónicas Progresivas/metabolismo , Multimerización de Proteína , Animales , Cobre/química , Cistatina M/química , Cistatina M/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Epilepsias Mioclónicas Progresivas/genética , Ratas
20.
Neurosci Lett ; 552: 156-61, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23933208

RESUMEN

Polyglutamine (polyQ) diseases result from expansion of CAG trinucleotide repeats in their responsible genes. Although gene products with polyQ expansions undergo conformational changes to aggregate in neurons, the relationship between inclusions and neurotoxicity remains unclear. Dentatorubral-pallidoluysian atrophy (DRPLA) is a polyQ disease, and DRPLA protein, also known as atrophin-1 (ATN1), carries an expanded polyQ tract. To investigate how an expanded polyQ tract influences ATN1 aggregation and localization, we compared the aggregation of ATN1 with a polyQ tract to that of ATN1 with a polyleucine (polyL) tract. In COS-7 cells, polyL-ATN1 triggered more aggregation than polyQ-ATN1 of similar repeat sizes. Immunocytochemical and biochemical studies revealed that replacement of the polyQ tract with polyL alters ATN1 localization, leading to retention of polyL-ATN1 in the cytoplasm. Despite this change in localization, polyL-ATN1 and polyQ-ATN1 demonstrate comparable repeat length dependent toxicity. These results suggest that expanded polyQ repeats in ATN1 may contribute to neurodegeneration via alterations in both protein aggregation and intracellular localization.


Asunto(s)
Proteínas Mutantes/efectos adversos , Epilepsias Mioclónicas Progresivas/metabolismo , Péptidos/toxicidad , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Mutantes/genética , Epilepsias Mioclónicas Progresivas/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Repeticiones de Trinucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA