RESUMEN
BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital disease, which is not well-defined. To our knowledge, no studies characterizing the XLMTM disease burden have been conducted in Brazil. We identified and described patients with suspected XLMTM using administrative claims data from the Brazilian public healthcare system. METHODS: Data from 2015 to 2019 were extracted from the DATASUS database. As no XLMTM-specific ICD-10 code was available, a stepwise algorithm was applied to identify patients with suspected XLMTM by selecting male patients with a congenital myopathies code (G71.2), aged < 18 years at index date (first claim of G71.2), with an associated diagnostic procedure (muscle biopsy/genetic test) and without spinal muscular atrophy or Duchenne muscular dystrophy. We attempted to identify patients with suspected severe XLMTM based on use of both respiratory and feeding support, which are nearly universal in the care of XLMTM patients. Analyses were performed for the overall cohort and stratified by age at index date < 5 years old and ≥ 5 years old. RESULTS: Of 173 patients with suspected XLMTM identified, 39% were < 5 years old at index date. Nearly all (N = 166) patients (96%) were diagnosed by muscle biopsy (91% of patients < 5 years old and 99% of patients ≥ 5 years old), six (3.5%) were diagnosed by clinical evaluation (8% of patients < 5 years old and 1% of patients ≥ 5 years old), and one was diagnosed by a genetic test. Most patients lived in Brasilia (n = 55), São Paulo (n = 33) and Minas Gerais (n = 27). More than 85% of patients < 5 years old and approximately 75% of patients ≥ 5 years old had physiotherapy at the index date. In both age groups, nearly 50% of patients required hospitalization at some point and 25% required mobility support. Respiratory and feeding support were required for 3% and 12% of patients, respectively, suggesting that between 5 and 21 patients may have had severe XLMTM. CONCLUSION: In this real-world study, genetic testing for XLMTM appears to be underutilized in Brazil and may contribute to underdiagnosis of the disease. Access to diagnosis and care is limited outside of specific regions with specialized clinics and hospitals. Substantial use of healthcare resources included hospitalization, physiotherapy, mobility support, and, to a lesser extent, feeding support and respiratory support.
Asunto(s)
Miopatías Estructurales Congénitas , Humanos , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/patología , Masculino , Brasil , Niño , Adolescente , Preescolar , Lactante , Atención a la Salud , Femenino , Adulto Joven , AdultoRESUMEN
Congenital myopathies (CMs) are a group of diseases that primarily affect the muscle fiber, especially the contractile apparatus and the different components that condition its normal functioning. They present as muscle weakness and hypotonia at birth or during the first year of life. Centronuclear CM is characterized by a high incidence of nuclei located centrally and internally in muscle fibers. Clinical case: a 22-year-old male patient with symptoms of muscle weakness since early childhood, with difficulty in performing physical activity according to his age, with the presence of a long face, a waddling gait, and a global decrease in muscle mass. Electromyography was performed, showing a neurogenic pattern and not the expected myopathic one, neuroconduction with reduced amplitude of the motor potential of the peroneal nerve and axonal and myelin damage of the posterior tibial nerves. The microscopic study of the studied striated muscle fragments stained with hematoxylin-eosin and Masson's trichrome showed the presence of fibers with central nuclei, diagnosing CM. The patient meets most of the description for CM, with involvement of all striated muscles, although it is important to note the neurogenic pattern present in this case, due to the denervation of damaged muscle fibers, which contain terminal axonal segments. Neuroconduction shows the involvement of motor nerves, but with normal sensory studies, axonal polyneuropathy is unlikely, due to normal sensory potentials. Different pathological findings have been described depending on the mutated gene in this disease, but all coincide with the presence of fibers with central nuclei for diagnosis by this means, which is so important in institutions where it is not possible to carry out genetic studies, and allowing early specific treatment, according to the stage through which the patient passes.
Asunto(s)
Miopatías Estructurales Congénitas , Masculino , Recién Nacido , Humanos , Preescolar , Adulto Joven , Adulto , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/patología , Músculo Esquelético/patología , Debilidad Muscular , ElectromiografíaRESUMEN
Bcl-2-associated athanogene 3 (BAG3) myopathy is a rare myofibrillar myopathy characterized by toe walking and clumsiness in the first decade with rapid progression to cardiomyopathy and restrictive lung disease in the second decade. Most patients (18 patients) have the c.626C >T (p.Pro209Leu) mutation. We describe BAG3 myopathy due to p.Pro209Leu in a 13-year-old girl with initial prominent neuropathic phenotype and no cardiac or respiratory involvement. Parents reported toe walking and clumsiness since 3 years old. Examination at the age of 13 years showed findings suggestive of Charcot-Marie-Tooth disease. Nerve conduction studies revealed demyelinating polyneuropathy. Next-generation sequencing panel for inherited neuropathies was unrevealing. Whole exome sequencing identified a de novo mutation in BAG3. Muscle biopsy confirmed myofibrillar myopathy. No cardiac involvement or symptoms of respiratory involvement at the age of 14 years. This case emphasizes the phenotypic variability of BAG3 myopathy and the importance of thorough electrophysiological examination and muscle pathology for establishing a precise diagnosis.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Miopatías Estructurales Congénitas/diagnóstico , Fenotipo , Adolescente , Femenino , Humanos , Mutación , Miopatías Estructurales Congénitas/genéticaRESUMEN
Centronuclear myopathy (CNM) is a group of rare genetic muscle disorders characterized by muscle fibers with centrally located nuclei. The most common forms of CNM have been attributed to X-linked recessive mutations in the MTM1 gene; autosomal-dominant mutations in the DNM2 gene-encoding dynamin-2, the BIN1 gene; and autosomal-recessive mutations in BIN1, RYR1, and TTN genes. Dominant CNM due to DNM2 mutations usually follows a mild clinical course with the onset in adolescence. Currently, around 35 mutations of the DNM2 gene have been identified in CNM; however, the underlying molecular mechanism of DNM2 mutation in the pathology of CNM remains elusive, and the standard clinical characteristics have not yet been defined. Here, we describe the case of a 17-year-old female who presented with proximal muscle weakness along with congenital anomalous pulmonary venous connection (which has not been described in previous cases of CNM), scoliosis, and lung disease without a significant family history. Her creatine kinase level was normal. Histology, special stains, and electron microscope findings on her skeletal muscle biopsy showed CNM with the characteristic features of a DNM2 mutation, which was later confirmed by next-generation sequencing. This case expands the known clinical and pathological findings of CNM with DNM2 gene mutation.
Asunto(s)
Humanos , Femenino , Adolescente , Dinamina II/genética , Miopatías Estructurales Congénitas/diagnóstico , Dolor de la Región Lumbar/diagnóstico , Enfermedades Pulmonares/diagnóstico , Debilidad Muscular/diagnóstico , Venas Pulmonares/anomalías , Escoliosis/diagnósticoRESUMEN
INTRODUCTION: Congenital myopathies are a heterogeneous group of diseases that share clinical early onset and specific hystopathological alterations in muscle. Genetic studies allow to determine the causative mutation in most cases. Genotypic and phenotypic heterogeneity exists, which is illustrated by noting that a genotype can be expressed in more than one clinicopathologic way and a phenotype may be caused by different genetic mutations. DEVELOPMENT: In this review we detail the characteristics of major congenital myopathies that allow clinical, pathological and genetic identification. We describe the findings of muscle biopsy that are the mainstay diagnosis. We emphasize and detail the importance of differential diagnosis by ruling out other diseases that present with hypotonia in infancy or neonatal period. We highlight the severe neonatal forms (nemaline, X-linked myotubular) to be identified early to establish prognosis and provide appropriate genetic counseling. We emphasize mutations of ryanodine gene (RYR1) through its association with malignant hyperthermia and mutations of selenoprotein 1 (SEPN1) and nemaline by its association with nocturnal hypoventilation. CONCLUSIONS: The deep knowledge of structural congenital myopathies facilitates diagnostic confirmation of congenital myopathy, allowing the timely implementation of measures related to breathing and feeding in more severe cases and the optimization of motor function in all patients with myopathy congenital.
TITLE: Miopatias estructurales congenitas.Introduccion. Las miopatias congenitas son un grupo heterogeneo de enfermedades que comparten clinica de inicio precoz y alteraciones histopatologicas musculares especificas. El estudio genetico permite determinar la mutacion causal en la mayoria de los casos. Existe heterogeneidad fenotipica y genotipica, lo que se ilustra al observar que un genotipo puede expresarse en mas de una forma clinicopatologica y un fenotipo puede estar causado por diferentes mutaciones geneticas. Desarrollo. En esta revision, se detallan las caracteristicas de las principales miopatias congenitas que permiten su identificacion clinica, patologica y genetica. Se describen los hallazgos de la biopsia muscular que constituyen el principal pilar diagnostico. Se enfatiza y se detalla la importancia del diagnostico diferencial, descartando otras patologias que se presentan con hipotonia en la lactancia o el periodo neonatal. Se destacan las formas neonatales graves (nemalinica, miotubular ligada al X) que se deben identificar precozmente para establecer el pronostico y brindar un consejo genetico adecuado. Se subrayan las mutaciones del gen rianodina (RYR1) por su asociacion a la hipertermia maligna y las mutaciones de la selenoproteina 1 (SEPN1) y la miopatia nemalinica por su asociacion a hipoventilacion nocturna. Conclusiones. El conocimiento profundo de las miopatias estructurales congenitas facilita la confirmacion diagnostica de la miopatia congenita, lo que permite la aplicacion oportuna de medidas relacionadas con la respiracion y la alimentacion de los casos mas graves y con la optimizacion de la funcion motora en todos los pacientes con miopatia congenita.
Asunto(s)
Miopatías Estructurales Congénitas , Proteínas Adaptadoras Transductoras de Señales/genética , Genes Dominantes , Genes Recesivos , Genotipo , Humanos , Lactante , Recién Nacido , Proteínas Musculares/genética , Músculo Esquelético/patología , Miopatías Nemalínicas/genética , Miopatías Estructurales Congénitas/clasificación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatía del Núcleo Central/genética , Proteínas Nucleares/genética , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/genética , Selenoproteínas/genética , Tropomiosina/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
PURPOSE OF REVIEW: Considerable progress has been made in molecular genetic research and in identifying the underlying pathogenesis of congenital myopathies, with implications for genetic counseling. Therefore an overview of such advances in the last two years is most timely and relevant for a more precise delineation of these disorders. RECENT FINDINGS: New mutations have been described on the ryanodine receptor gene, including the carboxyl-terminus region, and experimental models developed to explain their role in central core disease. Phenotype-genotype correlations for nemaline myopathy have improved our understanding of those related to gene mutations. In multi-minicore disease, collaborative studies support genetic heterogeneity and autosomal-recessive inheritance. Research on X-linked myotubular myopathies has revealed a high percentage of mothers of sporadic cases as carriers. Although not initially included within the congenital myopathies, desmin-related or myofibrillar myopathies are described here because they are closely related to other congenital myopathies with intracytoplasmic inclusions. Western blot for myotubularin and desmin has been proposed as a useful diagnostic test for both X-linked myotubular myopathy and desmin-related myopathy, and in-vitro and mouse models for the latter have provided insights into its pathogenesis. Several entities still await genetic characterization. Here we focus on clinical features, inheritance, and molecular genetics. SUMMARY: Advances in immunohistochemistry and molecular genetics in congenital muscular dystrophies have enriched our knowledge of this heterogeneous group of disorders, leading to more accurate classification and differentiation between the various congenital myopathies.