Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Muscle Nerve ; 57(4): 586-594, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28877545

RESUMEN

INTRODUCTION: The gain-of-function mutations that underlie sodium channel myotonia (SCM) and paramyotonia congenital (PMC) produce differing clinical phenotypes. We used muscle velocity recovery cycles (MVRCs) to investigate membrane properties. METHODS: MVRCs and responses to trains of stimuli were compared in patients with SCM (n = 9), PMC (n = 8), and normal controls (n = 26). RESULTS: The muscle relative refractory period was reduced in SCM, consistent with faster recovery of the mutant sodium channels from inactivation. Both SCM and PMC showed an increased early supernormality and increased mean supernormality following multiple conditioning stimuli, consistent with slowed sodium channel inactivation. Trains of fast impulses caused a loss of amplitude in PMC, after which only half of the muscle fibers recovered, suggesting that the remainder stayed depolarized by persistent sodium currents. DISCUSSION: The differing effects of mutations on sodium channel function can be demonstrated in human subjects in vivo using this technique. Muscle Nerve 57: 586-594, 2018.


Asunto(s)
Potenciales de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Miotonía Congénita/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miotonía Congénita/fisiopatología , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/fisiopatología , Periodo Refractario Electrofisiológico , Adulto Joven
2.
J Physiol ; 595(22): 6837-6850, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28940424

RESUMEN

KEY POINTS: Paramyotonia congenita is a hereditary channelopathy caused by missense mutations in the SCN4A gene, which encodes the α subunit of the human skeletal muscle voltage-gated sodium channel NaV1.4. Affected individuals suffered from myotonia and paralysis of muscles, which were aggravated by exposure to cold. We report a three-generation Chinese family with patients presenting paramyotonia congenita and identify a novel N1366S mutation of NaV1.4. Whole-cell electrophysiological recordings of the N1366S channel reveal a gain-of-function change of gating in response to cold. Modelling and molecular dynamic simulation data suggest that an arginine-to-serine substitution at position 1366 increases the distance from N1366 to R1454 and disrupts the hydrogen bond formed between them at low temperature. We demonstrate that N1366S is a disease-causing mutation and that the temperature-sensitive alteration of N1366S channel activity may be responsible for the pronounced paramyotonia congenita symptoms of these patients. ABSTRACT: Paramyotonia congenita is an autosomal dominant skeletal muscle channelopathy caused by missense mutations in SCN4A, the gene encoding the α subunit of the human skeletal muscle voltage-gated sodium channel NaV1.4. We report a three-generation family in which six members present clinical symptoms of paramyotonia congenita characterized by a marked worsening of myotonia by cold and by the presence of clear episodes of paralysis. We identified a novel mutation in SCN4A (Asn1366Ser, N1366S) in all patients in the family but not in healthy relatives or in 500 normal control subjects. Functional analysis of the channel protein expressed in HEK293 cells by whole-cell patch clamp recording revealed that the N1366S mutation led to significant alterations in the gating process of the NaV1.4 channel. The N1366S mutant displayed a cold-induced hyperpolarizing shift in the voltage dependence of activation and a depolarizing shift in fast inactivation, as well as a reduced rate of fast inactivation and accelerated recovery from fast inactivation. In addition, homology modelling and molecular dynamic simulation of N1366S and wild-type NaV1.4 channels indicated that the arginine-to-serine substitution disrupted the hydrogen bond formed between N1366 and R1454. Together, our results suggest that N1366S is a gain-of-function mutation of NaV1.4 at low temperature and the mutation may be responsible for the clinical symptoms of paramyotonia congenita in the affected family and constitute a basis for studies into its pathogenesis.


Asunto(s)
Mutación con Ganancia de Función , Activación del Canal Iónico , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Anciano , Frío , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
3.
Neuromuscul Disord ; 24(3): 227-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24332166

RESUMEN

The prevailing pathomechanistic paradigm for myotonic dystrophy (DM) is that aberrant expression of embryonic/fetal mRNA/protein isoforms accounts for most aspects of the pleiotropic phenotype. To identify aberrant isoforms in skeletal muscle of DM1 and DM2 patients, we performed exon-array profiling and RT-PCR validation on the largest DM sample set to date, including Duchenne, Becker and tibial muscular dystrophy (NMD) patients as disease controls, and non-disease controls. Strikingly, most expression and splicing changes in DM patients were shared with NMD controls. Comparison between DM and NMD identified almost no significant differences. We conclude that DM1 and DM2 are essentially identical for dysregulation of gene expression, and DM expression changes represent a subset of broader spectrum dystrophic changes. We found no evidence for qualitative splicing differences between DM1 and DM2. While some DM-specific splicing differences exist, most of the DM splicing differences were also seen in NMD controls. SSBP3 exon 6 missplicing was observed in all diseased muscle and led to reduced protein. We conclude there is no widespread DM-specific spliceopathy in skeletal muscle and suggest that missplicing in DM (and NMD) may not be the driving mechanism for the muscle pathology, since the same pathways show expression changes unrelated to splicing.


Asunto(s)
Expresión Génica , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Trastornos Miotónicos/genética , Distrofia Miotónica/genética , Empalme del ARN , Adulto , Anciano , Anciano de 80 o más Años , Niño , Exones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distrofias Musculares/metabolismo , Trastornos Miotónicos/metabolismo , Distrofia Miotónica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Adulto Joven
4.
Int J Biochem Cell Biol ; 45(10): 2280-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23796888

RESUMEN

Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are multisystemic diseases that primarily affect skeletal muscle, causing myotonia, muscle atrophy, and muscle weakness. DM1 and DM2 pathologies are caused by expansion of CTG and CCTG repeats in non-coding regions of the genes encoding myotonic dystrophy protein kinase (DMPK) and zinc finger protein 9 (ZNF9) respectively. These expansions cause DM pathologies through accumulation of mutant RNAs that alter RNA metabolism in patients' tissues by targeting RNA-binding proteins such as CUG-binding protein 1 (CUGBP1) and Muscle blind-like protein 1 (MBNL1). Despite overwhelming evidence showing the critical role of RNA-binding proteins in DM1 and DM2 pathologies, the downstream pathways by which these RNA-binding proteins cause muscle wasting and muscle weakness are not well understood. This review discusses the molecular pathways by which DM1 and DM2 mutations might cause muscle atrophy and describes progress toward the development of therapeutic interventions for muscle wasting and weakness in DM1 and DM2. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Trastornos Miotónicos/metabolismo , Distrofia Miotónica/metabolismo , Animales , Humanos , Músculo Esquelético/patología , Atrofia Muscular/patología , Trastornos Miotónicos/patología , Distrofia Miotónica/patología
5.
Mol Cell Biochem ; 380(1-2): 259-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23666741

RESUMEN

INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.


Asunto(s)
Empalme Alternativo , Antígenos CD/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Distrofia Miotónica/genética , Receptor de Insulina/genética , Adenosina Trifosfatasas/metabolismo , Adulto , Biopsia , Expresión Génica , Histocitoquímica , Humanos , Concentración de Iones de Hidrógeno , Captura por Microdisección con Láser/métodos , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Muscle Nerve ; 47(4): 483-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23381896

RESUMEN

Myotonia is a heritable disorder in which patients are unable to willfully relax their muscles. The physiological basis for myotonia lies in well-established deficiencies of skeletal muscle chloride and sodium conductances. What is unclear is how normal muscle function can temporarily return with repeated movement, the so-called "warm-up" phenomenon. Electrophysiological analyses of the skeletal muscle voltage-gated sodium channel Nav 1.4 (gene name SCN4A), a key player in myotonia, have revealed several parallels between the Nav 1.4 biophysical signature, specifically slow-inactivation, and myotonic warm-up, which suggest that Nav 1.4 is critical not only in producing the myotonic reaction, but also in mediating the warm-up.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miotonía/metabolismo , Trastornos Miotónicos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canales de Cloruro/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Miotonía/fisiopatología , Trastornos Miotónicos/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/genética
7.
Channels (Austin) ; 6(2): 75-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22643347

RESUMEN

Perturbations to body temperature affect almost all cellular processes and, within certain limits, results in minimal effects on overall physiology. Genetic mutations to ion channels, or channelopathies, can shift the fine homeostatic balance resulting in a decreased threshold to temperature induced disturbances. This review summarizes the functional consequences of currently identified voltage-gated sodium (NaV) channelopathies that lead to disorders with a temperature sensitive phenotype. A comprehensive knowledge of the relationships between genotype and environment is not only important for understanding the etiology of disease, but also for developing safe and effective treatment paradigms.


Asunto(s)
Temperatura Corporal/fisiología , Canalopatías/genética , Mutación , Canales de Sodio/genética , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatología , Canalopatías/metabolismo , Canalopatías/fisiopatología , Fenómenos Electrofisiológicos/genética , Fenómenos Electrofisiológicos/fisiología , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Eritromelalgia/metabolismo , Eritromelalgia/fisiopatología , Homeostasis/fisiología , Humanos , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/fisiopatología , Convulsiones Febriles/metabolismo , Convulsiones Febriles/fisiopatología
8.
Pediatr Int ; 54(5): 602-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22507243

RESUMEN

BACKGROUND: Paramyotonia congenita (PMC) is an autosomal dominant disorder characterized by cold- or exercise-induced myotonia. PMC is caused by a mutation in SCN4A which encodes the α-subunit of the skeletal muscle sodium channel. METHODS: The patient was an 11-year-old Japanese girl who was diagnosed as having PMC. To confirm the diagnosis, an orbital ice-pack test and blinking tests were performed. Next, to identify the mutation, genetic analysis of SCN4A was performed. Finally, to evaluate the mutation effect on the protein structure, in silico protein modeling analysis was performed. RESULTS: Cold- and exercise-induced myotonia was reproduced in the patient with non-invasive bedside tests: ice-pack and blinking tests. In the genetic analysis, a missense mutation, c.4343G>A in SCN4A, was identified, which may result in an arginine to histidine substitution at 1448 in the protein sequence (p.Arg1448His). According to the protein modeling analysis, the mutation neutralized the positive electrostatic charge at 1448 in the DIV/S4 segment and disrupted the beginning of the helical structure in the DIV/S3-S4 linker of the SCN4A protein. CONCLUSIONS: Diagnostic physical interventions in the patient confirmed the phenotype presentation consistent with PMC, and the in silico protein modeling analysis of p.Arg1448His predicted structural changes which can affect function of the protein. All the data confirmed the diagnosis of PMC in the patient and added to existing literature emphasizing the important role of arginine residue at 1448.


Asunto(s)
Músculo Esquelético/metabolismo , Trastornos Miotónicos/diagnóstico , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canales de Sodio/química , Secuencia de Aminoácidos , Niño , Simulación por Computador , Femenino , Humanos , Mutación Missense , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/química , Canales de Sodio/genética , Canales de Sodio/metabolismo
9.
Neuromuscul Disord ; 22(7): 604-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22520280

RESUMEN

The pathogenesis of myotonic dystrophy type 2 includes the sequestration of MBNL proteins by expanded CCUG transcripts, which leads to an abnormal splicing of their target pre-mRNAs. We have found CCUG(exp) RNA transcripts of the ZNF9 gene associated with the formation of ribonuclear foci in human skeletal muscle and some non-muscle tissues present in muscle biopsies and skin excisions from myotonic dystrophy type 2 patients. Using RNA-FISH and immunofluorescence-FISH methods in combination with a high-resolution confocal microscopy, we demonstrate a different frequency of nuclei containing the CCUG(exp) foci, a different expression pattern of MBNL1 protein and a different sequestration of MBNL1 by CCUG(exp) repeats in skeletal muscle, vascular smooth muscle and endothelia, Schwann cells, adipocytes, and ectodermal derivatives. The level of CCUG(exp) transcription in epidermal and hair sheath cells is lower compared with that in other tissues examined. We suppose that non-muscle tissues of myotonic dystrophy type 2 patients might be affected by a similar molecular mechanism as the skeletal muscle, as suggested by our observation of an aberrant insulin receptor splicing in myotonic dystrophy type 2 adipocytes.


Asunto(s)
Músculo Esquelético/metabolismo , Trastornos Miotónicos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Actinas/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Análisis de Varianza , Antígenos CD34/metabolismo , Endotelio/metabolismo , Endotelio/patología , Humanos , Microscopía Confocal , Trastornos Miotónicos/diagnóstico , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Distrofia Miotónica , Proteínas de Neurofilamentos/metabolismo , Transporte de Proteínas/fisiología , ARN/metabolismo , Empalme del ARN/genética , Receptor de Insulina/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas S100/metabolismo , Piel/metabolismo , Piel/patología
10.
Eur J Histochem ; 55(3): e26, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073373

RESUMEN

Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder caused by the expansion of the tetranucleotidic repeat (CCTG)n in the first intron of the Zinc Finger Protein-9 gene. In DM2 tissues, the expanded mutant transcripts accumulate in nuclear focal aggregates where splicing factors are sequestered, thus affecting mRNA processing. Interestingly, the ultrastructural alterations in the splicing machinery observed in the myonuclei of DM2 skeletal muscles are reminiscent of the nuclear changes occurring in age-related muscle atrophy. Here, we investigated in vitro structural and functional features of satellite cell-derived myoblasts from biceps brachii, in the attempt to investigate cell senescence indices in DM2 patients by ultrastructural cytochemistry. We observed that in satellite cell-derived DM2 myoblasts, cell-senescence alterations such as cytoplasmic vacuolization, reduction of the proteosynthetic apparatus, accumulation of heterochromatin and impairment of the pre-mRNA maturation pathways occur earlier than in myoblasts from healthy patients. These results, together with preliminary in vitro observations on the early onset of defective structural features in DM2 myoblast derived-myotubes, suggest that the regeneration capability of DM2 satellite cells may be impaired, thus contributing to the muscular dystrophy in DM2 patients.


Asunto(s)
Senescencia Celular , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Células Cultivadas , Heterocromatina/metabolismo , Heterocromatina/patología , Humanos , Masculino , Persona de Mediana Edad , Distrofia Miotónica , Precursores del ARN/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Vacuolas/metabolismo , Vacuolas/patología
11.
Biochem Biophys Res Commun ; 406(1): 13-9, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21277287

RESUMEN

The myotonic dystrophy type 2 protein ZNF9/CNBP is a small nucleic acid binding protein proposed to act as a regulator of transcription and translation. The precise functions and activity of this protein are poorly understood. Previous studies suggested that ZNF9 regulates translation and facilitates the process of cap-independent translation through interactions with mRNA and the translating ribosome. To help determine the role played by ZNF9 in the activation of translation initiation, we combined genetic and biochemical analysis of the putative ZNF9 ortholog GIS2, in the budding yeast Saccharomyces cerevisiae. Purification of the Gis2p protein followed by mass spectrometry based-proteomic analysis identified a large number of co-purifying ribosomal subunits and translation factors, strongly suggesting that Gis2p interacts with the protein translation machinery. Polysome profiling and ribosome isolation experiments confirm that Gis2p physically interacts with the translating ribosome. Interestingly, expression of yeast Gis2p in HEK293T cells activates cap-independent translation driven by the 5'UTR of the ODC gene. These data suggest that Gis2 is functionally orthologous to ZNF9 and acts as a cap-independent translation factor.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Secuencia Conservada , Evolución Molecular , Células HEK293 , Humanos , Datos de Secuencia Molecular , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Distrofia Miotónica , Filogenia , Polirribosomas/metabolismo , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética
12.
Neuromuscul Disord ; 21(2): 81-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21169019

RESUMEN

Myotonic Dystrophy Type-1 (DM1) is caused by the expansion of a CTG repeat with a peculiar pattern of multisystemic involvement affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA expression is disrupted in several myopathies, the expression of 24 candidate microRNAs was analyzed in skeletal muscle biopsies of 15 DM1 patients. Controls were constituted by biopsies without overt pathological features derived from 14 subjects with suspected neuromuscular disorder of undetermined nature. We found that miR-1 and miR-335 were up-regulated, whereas miR-29b and c, and miR-33 were down-regulated in DM1 biopsies compared to controls. We also found that the cellular distribution of muscle specific miR-1, miR-133b and miR-206 was severely altered in DM1 skeletal muscles. MicroRNA dysregulation was likely functionally relevant, since it impacted on the expression of the predicted miR-1, and miR-29 targets. The observed miRNA dysregulations and myslocalizations may contribute to DM1 pathogenetic mechanisms.


Asunto(s)
Regulación hacia Abajo/fisiología , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Regulación hacia Arriba/fisiología , Adulto , Biopsia , Estudios de Casos y Controles , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Músculo Esquelético/patología , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Distrofia Miotónica/metabolismo , Distrofia Miotónica/fisiopatología , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Adulto Joven
13.
Am J Pathol ; 177(6): 3025-36, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20971734

RESUMEN

The mutation that underlies myotonic dystrophy type 2 (DM2) is a (CCTG)n expansion in intron 1 of zinc finger protein 9 (ZNF9). It has been suggested that ZNF9 is of no consequence for disease pathogenesis. We determined the expression levels of ZNF9 during muscle cell differentiation and in DM2 muscle by microarray profiling, real-time RT-PCR, splice variant analysis, immunofluorescence, and Western blotting. Our results show that in differentiating myoblasts, ZNF9 protein was localized primarily to the nucleus, whereas in mature muscle fibers, it was cytoplasmic and organized in sarcomeric striations at the Z-disk. In patients with DM2, ZNF9 was abnormally expressed. First, there was an overall reduction in both the mRNA and protein levels. Second, the subcellular localization of the ZNF9 protein was somewhat less cytoplasmic and more membrane-bound. Third, our splice variant analysis revealed retention of intron 3 in an aberrant isoform, and fourth quantitative allele-specific expression analysis showed the persistence of intron 1 sequences from the abnormal allele, further suggesting that the mutant allele is incompletely spliced. Thus, the decrease in total expression appears to be due to impaired splicing of the mutant transcript. Our data indicate that ZNF9 expression in DM2 patients is altered at multiple levels. Although toxic RNA effects likely explain overlapping phenotypic manifestations between DM1 and DM2, abnormal ZNF9 levels in DM2 may account for the differences in DM1.


Asunto(s)
Expansión de las Repeticiones de ADN/fisiología , Proteínas de Unión al ARN/genética , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/fisiología , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Trastornos Miotónicos/patología , Distrofia Miotónica , Proteínas de Unión al ARN/metabolismo , Distribución Tisular/genética , Adulto Joven
15.
Neurol Sci ; 30(3): 185-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19326042

RESUMEN

Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (proximal muscular myopaty/DM2) are caused by similar dynamic mutations at two distinct genetic loci. The two diseases also lead to similar phenotypes but different clinical severity. Dysregulation of alternative splicing has been suggested as the common pathogenic mechanism. Here, we investigate the molecular differences between DM1 and DM2 using reverse transcriptase-polymerase chain reaction of troponin T (TnT) and the insulin receptor (IR), as well as immunoblotting of TnT in muscle biopsies from DM1 and DM2 patients. We found that: (a) slow TnT was encoded by two different transcripts in significantly different ratios in DM1 and DM2 muscles; (b) DM2 muscles exhibited a higher degree of alternative splicing dysregulation for fast TnT transcripts when compared to DM1 muscles; (c) the distribution of TnT proteins was significantly skewed towards higher molecular weight species in both diseases; (d) the RNA for the insulin-independent IR-A isoform was significantly increased and appeared related to the fibre-type composition in the majority of the cases examined. On the whole, these data should give a better insight on pathogenesis of DM1 and DM2.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Trastornos Miotónicos/genética , Receptor de Insulina/genética , Troponina T/genética , Adulto , Empalme Alternativo/genética , Estudios de Casos y Controles , Humanos , Persona de Mediana Edad , Fibras Musculares Esqueléticas/clasificación , Trastornos Miotónicos/clasificación , Trastornos Miotónicos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN/análisis , Receptor de Insulina/metabolismo , Valores de Referencia , Troponina T/metabolismo , Adulto Joven
17.
Neurology ; 70(10): 755-61, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-17898326

RESUMEN

BACKGROUND: Missense mutations of the skeletal muscle voltage-gated sodium channel (NaV1.4) are an established cause of several clinically distinct forms of periodic paralysis and myotonia. The mechanistic basis for the phenotypic variability of these allelic disorders of muscle excitability remains unknown. An atypical phenotype with cold-induced hypokalemic paralysis and myotonia at warm temperatures was reported to segregate with the P1158S mutation. OBJECTIVE: This study extends the functional characterization of the P1158S mutation and tests the specific hypothesis that impairment of Na channel slow inactivation is a common feature of periodic paralysis. METHODS: Mutant NaV1.4 channels (P1158S) were transiently expressed in human embryonic kidney cells and characterized by voltage-clamp studies of Na currents. RESULTS: Wild-type and P1158S channels displayed comparable behavior at 37 degrees C, but upon cooling to 25 degrees C, mutant channels activated at more negative potentials and slow inactivation was destabilized. CONCLUSIONS: Consistent with other NaV1.4 mutations associated with a paralytic phenotype, the P1158S mutation disrupts slow inactivation. The unique temperature sensitivity of the channel defect may contribute to the unusual clinical phenotype.


Asunto(s)
Canalopatías/fisiopatología , Activación del Canal Iónico/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Trastornos Miotónicos/fisiopatología , Parálisis Periódica Hiperpotasémica/fisiopatología , Canales de Sodio/metabolismo , Potenciales de Acción/genética , Temperatura Corporal/genética , Línea Celular , Canalopatías/genética , Canalopatías/metabolismo , Frío/efectos adversos , Humanos , Contracción Muscular/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Trastornos Miotónicos/genética , Trastornos Miotónicos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4 , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Tiempo de Reacción/genética , Sarcolema/genética , Sarcolema/metabolismo , Canales de Sodio/genética , Factores de Tiempo
18.
Muscle Nerve ; 37(1): 23-6, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17823953

RESUMEN

In this study we investigated a family with paramyotonia (PC) congenita caused by a Gly1306Val mutation in the voltage-gated sodium-channel gene SCN4A. A previous study showed that exposure to cold aggravates the muscle stiffness in patients with this mutation. However, the mechanism behind cold sensitivity and the sodium-channel defect remained unclear. In order to gain a better understanding of sarcolemmal propagation in these patients, we measured muscle-fiber conduction velocity (MFCV) invasively. We studied four PC patients and four healthy subjects at room temperature. After the muscle was cooled, MFCV was measured again in the two PC patients and four control subjects. MFCV was significantly lower in the PC patients at room temperature, compatible with dysfunctional sodium channels. After cooling, MFCV was significantly lower in both groups as compared with room temperature. The relative slowing was 1.4% per degrees C for PC patients and 1.5% per degrees C for healthy subjects. These results indicate that, in these PC patients, mutant and wild-type sodium channels respond equally to cold exposure. Thus, MFCV is abnormal in these patients, but the aggravation of muscle stiffness cannot be explained by an abnormal sarcolemmal response to cold.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiopatología , Trastornos Miotónicos/genética , Trastornos Miotónicos/fisiopatología , Canales de Sodio/genética , Potenciales de Acción/genética , Adulto , Frío/efectos adversos , Electromiografía , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación/genética , Trastornos Miotónicos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4 , Tiempo de Reacción/genética , Sarcolema/genética , Sarcolema/metabolismo , Factores de Tiempo
19.
Magn Reson Med ; 57(1): 74-81, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17191248

RESUMEN

(23)Na MRI has the potential to noninvasively detect sodium (Na) content changes in vivo. The goal of this study was to implement (23)Na MRI in a clinical setting for neurooncological and muscular imaging. Due to the biexponential T(2) decay of the tissue Na signal with a short component, which ranges between 0.5-8 ms, the measurement of total Na content requires imaging techniques with echo times (TEs) below 0.5 ms. A 3D radial pulse sequence with a TE of 0.2 ms at a spatial resolution of 4 x 4 x 4 mm(3) was developed that allows the acquisition and presentation of Na images on the scanner. This sequence was evaluated in patients with low- and high-grade gliomas, and higher (23)Na MR signals corresponding to an increased Na content were found in the tumor regions. The contrast-to-noise ratio (CNR) between tumor and white matter increased from 0.8 +/- 0.2 to 1.3 +/- 0.3 with tumor grade. In patients with an identified muscular (23)Na channelopathy (Paramyotonia congenita (PC)), induced muscle weakness led to a signal increase of approximately 18% in the (23)Na MR images, which was attributed to intracellular Na(+) accumulation in this region.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/metabolismo , Trastornos Miotónicos/diagnóstico , Sodio/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/metabolismo , Estudios de Factibilidad , Glioma/metabolismo , Humanos , Imagen por Resonancia Magnética/instrumentación , Persona de Mediana Edad , Trastornos Miotónicos/metabolismo , Proyectos Piloto , Valores de Referencia , Sodio/análisis , Isótopos de Sodio
20.
Neurology ; 67(7): 1151-8, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16931510

RESUMEN

BACKGROUND: Muscle channelopathies such as paramyotonia, hyperkalemic periodic paralysis, and potassium-aggravated myotonia are caused by gain-of-function Na+ channel mutations. METHODS: Methods: Implementation of a three-dimensional radial 23Na magnetic resonance (MR) sequence with ultra-short echo times allowed the authors to quantify changes in the total muscular 23Na signal intensity. By this technique and T2-weighted 1H MRI, the authors studied whether the affected muscles take up Na+ and water during episodes of myotonic stiffness or of cold- or exercise-induced weakness. RESULTS: A 22% increase in the 23Na signal intensity and edema-like changes on T2-weighted 1H MR images were associated with cold-induced weakness in all 10 paramyotonia patients; signal increase and weakness disappeared within 1 day. A 10% increase in 23Na, but no increase in the T2-weighted 1H signal, occurred during cold- or exercise-induced weakness in seven hyperkalemic periodic paralysis patients, and no MR changes were observed in controls or exercise-induced stiffness in six potassium-aggravated myotonia patients. Measurements on native muscle fibers revealed provocation-induced, intracellular Na+ accumulation and membrane depolarization by -41 mV for paramyotonia, by -30 mV for hyperkalemic periodic paralysis, and by -20 mV for potassium-aggravated myotonia. The combined in vivo and in vitro approach showed a close correlation between the increase in 23Na MR signal intensity and the membrane depolarization (r = 0.92). CONCLUSIONS: The increase in the total 23Na signal intensity reflects intracellular changes, the cold-induced Na+ shifts are greatest and osmotically relevant in paramyotonia patients, and even osmotically irrelevant Na+ shifts can be detected by the implemented 23Na MR technique.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Músculo Esquelético/metabolismo , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/metabolismo , Canales de Sodio/metabolismo , Isótopos de Sodio/farmacocinética , Adulto , Femenino , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Músculo Esquelético/patología , Trastornos Miotónicos/diagnóstico , Trastornos Miotónicos/metabolismo , Parálisis Periódica Hiperpotasémica/diagnóstico , Parálisis Periódica Hiperpotasémica/metabolismo , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA