Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neoplasia ; 39: 100897, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36940556

RESUMEN

Lung cancer is one of the most commonly diagnosed cancers worldwide. Although cisplatin-based chemotherapy regimens serve a pivotal role in non-small cell lung cancer (NSCLC) treatment, drug resistance and serious side effects limited its further clinical application. Regorafenib, a small-molecule multi-kinase inhibitor, was demonstrated to have promising anti-tumor activity in various solid tumors. In the present study, we found that regorafenib markedly enhanced cisplatin-induced cytotoxicity in lung cancer cells by activating reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ER Stress), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Regorafenib increased ROS generation by promoting NADPH oxidase 5 (NOX5) expression, and knocking down NOX5 attenuated ROS-mediated cytotoxicity of regorafenib in lung cancer cells. Additionally, mice xenograft model validated that synergistic anti-tumor effects of combined treatment with regorafenib and cisplatin. Our results suggested that combination therapy with regorafenib and cisplatin may serve as a potential therapeutic strategy for some NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , NADPH Oxidasa 5/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Línea Celular Tumoral , Estrés del Retículo Endoplásmico
2.
Cardiovasc Res ; 118(5): 1359-1373, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-34320175

RESUMEN

AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION: We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Actinas/metabolismo , Angiotensina II/metabolismo , Animales , Células Cultivadas , Humanos , Meliteno/metabolismo , Meliteno/farmacología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/farmacología , Oxidación-Reducción , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Cardiovasc Res ; 118(9): 2196-2210, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34273166

RESUMEN

AIMS: Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. METHODS AND RESULTS: We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. CONCLUSION: In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Vesículas Extracelulares , Músculo Liso Vascular , Nicotina , Calcificación Vascular , Aterosclerosis/metabolismo , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/farmacología , Nicotina/efectos adversos , Nicotina/metabolismo , Estrés Oxidativo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Microtomografía por Rayos X
4.
J Microbiol ; 56(6): 373-386, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29858825

RESUMEN

The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.


Asunto(s)
Antiinfecciosos/farmacología , Oxidasas Duales/metabolismo , Oxidasas Duales/farmacología , Lactoperoxidasa/metabolismo , Lactoperoxidasa/farmacología , Animales , Antifúngicos/farmacología , Antiparasitarios/farmacología , Antivirales/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Inmunidad Innata , Proteínas de la Membrana/metabolismo , NADPH Oxidasa 1/farmacología , NADPH Oxidasa 5/farmacología , NADPH Oxidasas/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/metabolismo , Glándulas Salivales/metabolismo , Tiocianatos , Glándula Tiroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA