Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.418
Filtrar
1.
Nano Lett ; 24(42): 13293-13299, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39361530

RESUMEN

In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.


Asunto(s)
Nanopartículas , Corona de Proteínas , Dióxido de Silicio , Dióxido de Silicio/química , Nanopartículas/química , Corona de Proteínas/química , Fotones , Coloides/química , Propiedades de Superficie
2.
AAPS PharmSciTech ; 25(7): 212, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242428

RESUMEN

UV radiation causes long- and short-term skin damage, such as erythema and skin cancer. Therefore, the use of sunscreens is extremely important. However, concerns about UV filter safety have prompted exploration into alternative solutions, with nanotechnology emerging as a promising avenue. This systematic review identified 23 experimental studies utilizing nanocarriers to encapsulate sunscreens with the aim of enhancing their efficacy and safety. Polymeric and lipid nanoparticles are frequently employed to encapsulate both organic and inorganic UV filters along with natural antioxidants. Nanocarriers have demonstrated benefits including reduced active ingredient usage, increased sun protection factor, and mitigated photoinstability. Notably, they also decreased the skin absorption of UV filters. In summary, nanocarriers represent a viable strategy for improving sunscreen formulations, offering enhanced physicochemical properties and bolstered photoprotective effects, thereby addressing concerns regarding UV filter safety and efficacy in cosmetic applications.


Asunto(s)
Nanopartículas , Nanotecnología , Protectores Solares , Rayos Ultravioleta , Animales , Humanos , Antioxidantes/administración & dosificación , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Nanotecnología/métodos , Polímeros/química , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Factor de Protección Solar , Protectores Solares/química , Protectores Solares/administración & dosificación , Rayos Ultravioleta/efectos adversos
3.
J Clin Pediatr Dent ; 48(4): 160-167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39087226

RESUMEN

Glass ionomer cements (GICs) are the common materials employed in pediatric dentistry because of their specific applications in class I restorations and atraumatic restoration treatments (ART) of deciduous teeth in populations at high risk of caries. Studies show a limited clinical durability of these materials. Attempts have thus been made to incorporate nanoparticles (NPs) into the glass ionomer for improving resistance and make it like the tooth structure. An in vitro experimental study was conducted using the required samples dimensions and prepared based on the test being carried out on the three groups with or without the modification of light-cured glass ionomer. Samples were grouped as follows: control group (G1_C), 2% silver phosphate/hydroxyapatite NPs group (G2_SPH), and 2% titanium dioxide NPs group (G3_TiO2). The physical tests regarding flexural strength (n = 10 per group), solubility (n = 10 per group), and radiopacity (n = 3 per group) were performed. The data were analyzed by Shapiro Wilks test, and one-way analysis of variance (one-way ANOVA), and multiple comparisons by post hoc Tukey's test. The p-value of < 0.05 was considered significant. No statistically significant difference was observed between the control group (G1_C) and (G2_SPH) (p = 0.704) in the flexural strength test, however differences were found between G2_SPH and G3_TiO2 groups, ANOVA (p = 0.006); post hoc Tukey's test (p = 0.014). Pertaining to the solubility, G2_SPH obtained the lowest among the three groups, ANOVA (p = 0.010); post hoc Tukey's test (p = 0.009). The three study groups obtained an adequate radiopacity of >1 mm Al, respectively. The resin-modified glass ionomer cement (RMGIC) was further modified with 2% silver phosphate/hydroxyapatite NPs to improve the physical properties such as enhancing the solubility and sorption without compromising the flexural strength and radiopacity behavior of modified RMGIC. The incorporation of 2% titanium dioxide NPs did not improve the properties studied.


Asunto(s)
Durapatita , Cementos de Ionómero Vítreo , Nanopartículas , Fosfatos , Titanio , Titanio/química , Cementos de Ionómero Vítreo/química , Durapatita/química , Nanopartículas/química , Fosfatos/química , Técnicas In Vitro , Ensayo de Materiales , Humanos , Compuestos de Plata/química , Solubilidad , Resistencia Flexional
4.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125026

RESUMEN

Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 µg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies.


Asunto(s)
Quitosano , Endocitosis , Lisosomas , Nanopartículas , Quitosano/química , Lisosomas/metabolismo , Endocitosis/efectos de los fármacos , Nanopartículas/química , Animales , Ratones , Línea Celular , Humanos , Portadores de Fármacos/química , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Supervivencia Celular/efectos de los fármacos
5.
Microb Pathog ; 195: 106837, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103128

RESUMEN

Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.


Asunto(s)
Bacterias , Biopelículas , Emulsiones , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Emulsiones/química , Emulsiones/farmacología , Biopelículas/efectos de los fármacos , Bacterias/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Humanos , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Hongos/efectos de los fármacos , Nanopartículas/química , Animales
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125669

RESUMEN

Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Nanopartículas , Dióxido de Silicio , Nanomedicina Teranóstica , Dióxido de Silicio/química , Animales , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Nanomedicina Teranóstica/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Línea Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Medios de Contraste/química , Gadolinio/química , Porosidad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Ther Deliv ; 15(9): 699-716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101355

RESUMEN

Aim: Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues.Methods: BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach. Physicochemical characterizations were conducted on both NS and lyophilized solid-state BNZ-nanocrystals (NC).Results: BNZ-NS exhibited particle size <500 nm, an acceptable polydispersity index (0.23), high Z-potential, and physical stability for at least 90 days. BNZ-NC showed tenfold higher solubility than pure BNZ. Dissolution assays revealed rapid BNZ-NS dissolution. BNZ-NC demonstrated biocompatibility on an eukaryotic cell and enhanced BNZ efficacy against trypomastigotes of Trypanosoma cruzi.Conclusion: BNZ-NS offers a promising alternative, overcoming limitations associated with BNZ for optimized pharmacotherapy.


[Box: see text].


Asunto(s)
Enfermedad de Chagas , Nanopartículas , Nitroimidazoles , Tamaño de la Partícula , Solubilidad , Tripanocidas , Trypanosoma cruzi , Nitroimidazoles/química , Nitroimidazoles/administración & dosificación , Enfermedad de Chagas/tratamiento farmacológico , Trypanosoma cruzi/efectos de los fármacos , Nanopartículas/química , Tripanocidas/administración & dosificación , Tripanocidas/química , Tripanocidas/farmacología , Animales , Humanos , Suspensiones , Estabilidad de Medicamentos , Química Farmacéutica/métodos , Solventes/química , Liofilización
8.
Nanomedicine (Lond) ; 19(23): 1895-1911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109488

RESUMEN

Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model.Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy.Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals.Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.


[Box: see text].


Asunto(s)
Doxorrubicina , Nanopartículas , Doxorrubicina/administración & dosificación , Animales , Femenino , Nanopartículas/química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Ratones , Lípidos/química , Línea Celular Tumoral , Portadores de Fármacos/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Liposomas
9.
Int J Biol Macromol ; 278(Pt 1): 134690, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142480

RESUMEN

The encapsulation of essential oils (EOs) in protein-based biopolymeric matrices stabilized with surfactant ensures protection and physical stability of the EO against unfavorable environmental conditions. Accordingly, this study prepared zein nanoparticles loaded with eucalyptus essential oil (Z-EEO) and Litsea cubeba essential oil (Z-LEO), stable and with antifungal activity against Colletotrichum lindemuthianum, responsible for substantial damage to bean crops. The nanoparticles were prepared by nanoprecipitation with the aid of ultrasound treatment and characterized. The nanoparticles exhibited a hydrodynamic diameter close to 200 nm and PDI < 0.3 for 120 days, demonstrating the physical stability of the carrier system. Scanning electron microscopy and Transmission electron microscopy revealed that the nanoparticles were smooth and uniformly distributed spheres. Fourier-transform infrared spectroscopy showed interaction between zein and EOs through hydrogen bonding and hydrophobic interactions. Thermogravimetric analysis demonstrated the thermal stability of the nanoparticles compared to pure bioactive compounds. The nanoparticles exhibited a dose-dependent effect in inhibiting the fungus in in vitro testing, with Z-EEO standing out by inhibiting 70.0 % of the mycelial growth of C. lindemuthianum. Therefore, the results showed that zein has great potential to encapsulate hydrophobic compounds, improving the applicability of the bioactive compound as a biofungicide, providing protection for the EO.


Asunto(s)
Antifúngicos , Eucalyptus , Litsea , Nanopartículas , Aceites Volátiles , Zeína , Zeína/química , Antifúngicos/farmacología , Antifúngicos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Eucalyptus/química , Nanopartículas/química , Litsea/química , Colletotrichum/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Estabilidad de Medicamentos
10.
Food Res Int ; 192: 114810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147505

RESUMEN

Using green techniques to convert native starches into nanoparticles is an interesting approach to producing stabilizers for Pickering emulsions, aiming at highly stable emulsions in clean label products. Nanoprecipitation was used to prepare the Pickering starch nanoparticles, while ultrasound technique has been used to modulate the size of these nanoparticles at the same time as the emulsion was developed. Thus, the main objective of this study was to evaluate the stabilizing effect of cassava starch nanoparticles (SNP) produced by the nanoprecipitation technique combined with ultrasound treatment carried out in the presence of water and oil (more hydrophobic physicochemical environment), different from previous studies that carry out the mechanical treatment only in the presence of water. The results showed that the increased ultrasound energy input could reduce particle size (117.58 to 55.75 nm) and polydispersity (0.958 to 0.547) in aqueous dispersions. Subsequently, Pickering emulsions stabilized by SNPs showed that increasing emulsification (ultrasonication) time led to smaller droplet sizes and monomodal size distribution. Despite flocculation, long-term ultrasonication (6 and 9 min) caused little variation in the droplet size after 7 days of storage. The cavitation effects favored the interaction between oil droplets through weak attraction forces and particle sharing, favoring the Pickering stabilization against droplet coalescence. Our results show the potential to use only physical modifications to obtain nanoparticles that can produce coalescence-stable emulsions that are environmentally friendly.


Asunto(s)
Emulsiones , Manihot , Nanopartículas , Tamaño de la Partícula , Almidón , Manihot/química , Almidón/química , Emulsiones/química , Nanopartículas/química , Agua/química , Sonicación/métodos , Floculación
11.
Nanoscale ; 16(33): 15801-15814, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39120682

RESUMEN

In disease treatment, maintaining therapeutic drug concentrations often requires multiple doses. Lipid/polymer hybrid nanoparticles (LPHNPs) offer a promising solution by facilitating sustained drug delivery within therapeutic ranges. Here, we synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with soy lecithin using nanoprecipitation and self-assembly techniques. These nanoparticles were incorporated into gelatin aerogels to ensure uniform distribution and increase the concentration. Our study focused on understanding the release kinetics of hydrophilic (gallic acid) and lipophilic (quercetin) compounds from this system. Nanoparticles exhibited hydrodynamic diameters of 100 ± 15 nm (empty), 153 ± 33 nm (gallic acid-loaded), and 149 ± 21 nm (quercetin-loaded), with encapsulation efficiencies of 90 ± 5% and 70 ± 10% respectively. Gallic acid release followed the Korsmeyer-Peppas kinetics model (n = 1.01), while quercetin showed first-order kinetics. Notably, encapsulated compounds demonstrated delayed release compared to free compounds in gelatin aerogels, illustrating LPHNPs' ability to modulate release profiles independent of the compound type. This study underscores the potential of LPHNPs in optimizing drug delivery strategies for enhanced therapeutic outcomes.


Asunto(s)
Ácido Gálico , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Quercetina , Quercetina/química , Nanopartículas/química , Ácido Gálico/química , Cinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Lecitinas/química , Gelatina/química , Ácido Láctico/química , Ácido Poliglicólico/química , Liberación de Fármacos , Lípidos/química , Portadores de Fármacos/química , Tamaño de la Partícula
12.
Int J Biol Macromol ; 277(Pt 4): 134512, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111480

RESUMEN

With the increasing emphasis on sustainability and eco-friendliness, a novel biodegradable packaging materials has received unprecedented attention. Nanocellulose, owing to its high crystallinity, degradability, minimal toxicity, and outstanding biocompatibility, has gained considerable interest in the field of sustainable packaging. This review provided a comprehensive perspective about the recent advances and future development of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). We first introduced the utilization of agricultural waste for nanocellulose production, such as straw, bagasse, fruit byproducts, and shells. Next, we discussed the preparation process of nanocellulose from various agricultural wastes and expounded the advantages and shortcomings of different methods. Subsequently, this review offered an in-depth investigation on the application of nanocellulose in food packaging, especially the function and packaged form of nanocellulose on food preservation. Finally, the safety evaluation of nanocellulose in food packaging is conducted to enlighten and promote the perfection of relevant regulatory documents. In short, this review provided valuable insights for potential research on the biobased materials utilized in future food packaging.


Asunto(s)
Agricultura , Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Celulosa/química , Agricultura/métodos , Nanopartículas/química , Nanofibras/química , Residuos , Conservación de Alimentos/métodos
13.
Immunobiology ; 229(5): 152837, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089130

RESUMEN

It is known that conventional antigen presentation involves phagocytosis of antigens followed by its internalization in endocytic compartments and presentation of epitopes through MHC class II molecules for CD4 T cells. However, since 1976 a cross-presentation pathway has been studied, in which CD8 T cells are activated via MHC class I with antigens acquired through phagocytosis or endocytosis by dendritic cells (DCs). Among some important molecules involved in the cross-presentation, the C-type lectin receptor of the Dectin-1 cluster (CLECs), particularly the CLEC9A receptor, not only is expressed in dendritic cells but also presents a pivotal role in this context. In special, CLEC12A has been highlighted as a malaria pigment hemozoin (HZ) receptor. During Plasmodium infection, hemozoin crystals defend the parasite against heme toxicity within erythrocytes, as well as the released native HZ elicits pro-inflammatory responses and can induce cross-presentation. Particularly, this crystal can be synthesized from hematin anhydride and mimics the native form, and the gaps generated between the nanocrystal domains during its synthesis allow for substance coupling followed by its coating. Therefore, this study aimed to assess whether synthetic hemozoin (sHz) or hematin anhydride could be a nanocarrier and promote cross-presentation in dendritic cells. Firstly, it was verified that sHz can carry coated and coupled antigens, the compounds can associate to LAMP1-positive vesicles and decrease overall intracellular pH, which can potentially enhance the cross-presentation of ovalbumin and Leishmania infantum antigens. Thus, this study adds important data in the molecular intricacies of antigen presentation by showing not only the sHz immunomodulatory properties but also its potential applications as an antigen carrier.


Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Células Dendríticas , Hemoproteínas , Hemoproteínas/inmunología , Reactividad Cruzada/inmunología , Animales , Células Dendríticas/inmunología , Ratones , Nanopartículas/química , Humanos , Malaria/inmunología , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Ovalbúmina/inmunología
14.
J Dent ; 149: 105283, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096997

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the effect of an adhesive loaded with 0.2 % copper (Cu) and 5 % zinc oxide (ZnO) nanoparticles (Nps) on its adhesive properties and enzymatic activity at the hybrid layer ex vivo in a randomized clinical model. METHODS: Fifteen patients participated in this study, and a total of 30 third molars were used. Occlusal cavities (4 × 4 × 2 mm) were made in each tooth, and randomly divided into 2 groups: (i) Experimental group: commercial adhesive loaded with 0.2wt % CuNps and 5wt % ZnONps; and (ii) Control Group: non-loaded commercial adhesive. Teeth were restored with resin composite. Thirty days later, extractions were performed. Extracted teeth were longitudinally sectioned. Nps in powder were characterized by field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray (EDX) analysis. Microtensile bond strength (µTBS), degree of conversion (DC), and nanoleakeage (NL) tests were executed. In situ zymography (Zym) was performed to evaluate the gelatinolytic activity at the hybrid layer. Student's t-test (α = 0.05) was applied for all tests. RESULTS: µTBS and DC did not show significant differences (p > 0.05) between both groups. However, NL and gelatinolytic activity at the hybrid layer showed significant values (p < 0.05) for experimental group in comparison with control group. CONCLUSION: The addition of 0.2 % CuNps and 5 % ZnONps to a universal adhesive decreases NL and gelatinolytic activity at the hybrid layer, without jeopardizing its adhesive properties. SIGNIFICANCE: This randomized clinical trial with ex vivo analysis demonstrate that a commercial adhesive modified with 0.2wt % Cu and 5wt % ZnO Nps that does not affect its adhesive properties, reducing gelatinolytic activity and nanoleakage at the hybrid layer, which should contribute to an improvement of long term bonding-dentine clinical performance.


Asunto(s)
Resinas Compuestas , Cobre , Recubrimiento Dental Adhesivo , Microscopía Electrónica de Rastreo , Resistencia a la Tracción , Óxido de Zinc , Humanos , Óxido de Zinc/química , Cobre/química , Recubrimiento Dental Adhesivo/métodos , Resinas Compuestas/química , Nanopartículas/química , Recubrimientos Dentinarios/química , Dentina/efectos de los fármacos , Dentina/enzimología , Ensayo de Materiales , Masculino , Cementos de Resina/química , Adulto , Femenino , Propiedades de Superficie , Cementos Dentales/química , Tercer Molar , Restauración Dental Permanente/métodos , Espectrometría por Rayos X
15.
J Dent ; 149: 105291, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117099

RESUMEN

OBJECTIVE: This study aims to synthesize, characterize, and assess the penetration of hydrogen peroxide (HP), color change (CC), and surface morphology changes after the application of two distinct nano-hydroxyapatite (nano-HAp). METHODS: Two nano-HAp were previously synthesized by co-precipitation: one with rod-shaped particles (RS) and the other with spherical-shaped particles (SS). The surface charge of the nano-HAp particles was determined at varying pH levels and characterized by X-ray diffraction patterns and Fourier transform infrared spectroscopy. The morphology of the samples was assessed using scanning electron microscopy (SEM). The nano-HAp particles were applied before the dental bleaching procedure. Forty teeth were divided into four groups (n = 10) according to the bleaching treatment: no treatment, bleaching with 35 % HP only, RS application and bleaching with 35 % HP, and SS application and bleaching with 35 % HP. HP concentration (µg mL-1) was measured using UV-Vis, while CC was evaluated with a digital spectrophotometer (ΔEab, ΔE00 and WID). Additionally, four teeth from each group were selected for SEM analysis. Statistical analysis encompassed one-way ANOVA, Tukey's, and Dunnet's tests. RESULTS: RS and SS were successfully synthesized by coprecipitation, primarily differing in pH during synthesis. Both variations of nano-HAp morphology significantly reduced HP diffusion into the pulp chamber (p < 0.001). Regarding enamel morphology, groups analyzed post dental bleaching exhibited greater HAp deposition on the enamel surface. Notably, this deposition did not impede CC. SIGNIFICANCE: The utilization of different nano-HAp morphologies prior to dental bleaching appears to be a promising strategy for mitigating adverse effects associated with dental bleaching procedures.


Asunto(s)
Esmalte Dental , Peróxido de Hidrógeno , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Blanqueadores Dentales , Blanqueamiento de Dientes , Difracción de Rayos X , Blanqueamiento de Dientes/métodos , Esmalte Dental/efectos de los fármacos , Humanos , Blanqueadores Dentales/química , Blanqueadores Dentales/administración & dosificación , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Color , Nanopartículas/química , Hidroxiapatitas/química , Durapatita/química , Ensayo de Materiales
16.
AAPS PharmSciTech ; 25(7): 199, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198340

RESUMEN

Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.


Asunto(s)
Estabilidad de Medicamentos , Fenbendazol , Liofilización , Nanopartículas , Solubilidad , Nanopartículas/química , Fenbendazol/química , Liofilización/métodos , Rastreo Diferencial de Calorimetría/métodos , Almacenaje de Medicamentos , Tamaño de la Partícula , Difracción de Rayos X/métodos , Liberación de Fármacos , Química Farmacéutica/métodos , Poloxámero/química , Crioprotectores/química
17.
J Dent ; 150: 105330, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39214276

RESUMEN

OBJECTIVES: To evaluate in vitro the effects of nano-sized sodium trimetaphosphate (TMPnano) and sodium fluoride (F) added to a 17.5 % hydrogen peroxide (H2O2) bleaching gel on the color change, enamel mechanical and morphological properties, and H2O2 transamelodentinal diffusion. MATERIALS AND METHODS: Bovine enamel/dentin discs (n = 180) were divided according to the bleaching gel: 17.5 % H2O2 (17.5 % HP); 17.5 % H2O2 + 0.1 % F (HP/F); 17.5 % H2O2 + 1 % TMPnano (HP/TMPnano); 17.5 % H2O2 + 0.1 % F + 1 % TMPnano (HP/F/TMPnano) and 35 % H2O2 (35 % HP). The gels were applied for 40 min on three sessions, each session spaced 7 days apart. The total color change (ΔE*ab) according to the Commission Internationale de l'Eclairage (CIE) L*a*b* color change measured by CIEDE2000 (ΔE00), whitening index (ΔWID), surface hardness (SH), surface roughness (Ra), cross-sectional hardness (ΔKHN), and transamelodentinal diffusion were assessed. Enamel surfaces were examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDS) analysis. The data were analyzed using ANOVA, followed by the Student-Newman-Keuls test (p < 0.05). RESULTS: ΔE*ab, ΔE00, and ΔWID values were comparable among the gels that produced a bleaching effect post-treatment (p < 0.001). The HP/F/TMPnano group exhibited lower mineral loss (SH and ΔKHN), Ra, and H2O2 diffusion compared to the 17.5 % HP and 35 % HP groups, which had the highest values (p < 0.001). SEM/EDS analysis revealed surface changes in all bleached groups, though these changes were less pronounced with F/TMPnano. CONCLUSIONS: The 17.5 % HP gel containing F/TMPnano maintains the bleaching effect while reducing enamel demineralization, roughness, H2O2 diffusion, and enamel morphological changes. CLINICAL RELEVANCE: Low-Concentration H2O2 bleaching gel containing F/TMPnano can be used as a novel approach to enhance safety and maintain the performance of aesthetic effects.


Asunto(s)
Esmalte Dental , Geles , Dureza , Peróxido de Hidrógeno , Polifosfatos , Fluoruro de Sodio , Propiedades de Superficie , Blanqueadores Dentales , Blanqueamiento de Dientes , Peróxido de Hidrógeno/administración & dosificación , Bovinos , Animales , Esmalte Dental/efectos de los fármacos , Blanqueadores Dentales/química , Blanqueadores Dentales/administración & dosificación , Blanqueadores Dentales/farmacología , Polifosfatos/farmacología , Polifosfatos/química , Polifosfatos/administración & dosificación , Blanqueamiento de Dientes/métodos , Dentina/efectos de los fármacos , Microscopía Electrónica de Rastreo , Nanopartículas/química , Difusión , Color , Ensayo de Materiales , Espectrometría por Rayos X
18.
ACS Appl Bio Mater ; 7(7): 4642-4653, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967050

RESUMEN

Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.


Asunto(s)
Antibacterianos , Quitosano , Electroforesis , Gentamicinas , Vidrio , Ensayo de Materiales , Nanopartículas , Tamaño de la Partícula , Propiedades de Superficie , Titanio , Gentamicinas/farmacología , Gentamicinas/química , Titanio/química , Titanio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Vidrio/química , Nanopartículas/química , Quitosano/química , Quitosano/farmacología , Porosidad , Pruebas de Sensibilidad Microbiana , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Prótesis e Implantes , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
19.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000425

RESUMEN

This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.


Asunto(s)
Durapatita , Nanopartículas , Oseointegración , Propiedades de Superficie , Circonio , Circonio/química , Animales , Durapatita/química , Durapatita/farmacología , Femenino , Ratas , Nanopartículas/química , Oseointegración/efectos de los fármacos , Implantes Dentales , Titanio/química , Tibia/efectos de los fármacos , Tibia/cirugía , Grabado Ácido Dental
20.
Braz Dent J ; 35: 5858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045991

RESUMEN

ER:YAG laser and experimental resin-based dental adhesive loaded with functionalized carbonated apatite filler were used in this study to evaluate the dentin interaction in terms of penetration and occlusion of the dentinal tubules aiding in the control of dentin hypersensitivity (DH). Spheroidal Carbonated apatite nanoparticles (N-CAP), with an average size of 20±5 nm diameter, were synthesized, characterized, and incorporated in a universal adhesive "All Bond Universal, Bisco, USA", in (2% weight) concentration. Er:YAG laser "Lightwalker, FOTONA, EU" was adjusted to an energy output of 40mJ/ pulse and pulse repetition of 10 Hz for 10 seconds. Dentin specimens were prepared from the buccal surface of 75 extracted sound human molars. The specimens were randomly divided into five groups (n=15) according to the surface treatment: Group (L): Laser only; Group (LB): Laser in combination with adhesive; Group (LBN): Laser in combination with adhesive loaded with N-CAP; Group (B): adhesive only; and Group (BN): adhesive loaded with N-CAP. Depth of penetration and occlusion of the dentinal tubules were assessed using Environmental Scanning Electron Microscope Examination (ESEM). One-way ANOVA was used to compare groups, followed by a pairwise test for multiple comparisons (α=0.05). Groups (LB), and (LBN) showed the highest mean of dentinal tubules' penetration, with a non-significant difference between them. In contrast, the specimens treated with laser only (L) showed the most minor penetration. The employment of ER-YAG laser irradiation with the adhesive loaded with N-CAP was evaluated to be effective in penetrating and occluding the opened dentinal tubules.


Asunto(s)
Láseres de Estado Sólido , Láseres de Estado Sólido/uso terapéutico , Humanos , Apatitas/química , Dentina , Microscopía Electrónica de Rastreo , Nanopartículas/química , Sensibilidad de la Dentina , Técnicas In Vitro , Cementos Dentales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA