Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 223
2.
J Gen Virol ; 105(5)2024 May.
Article En | MEDLINE | ID: mdl-38767624

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Bombyx , Haplotypes , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Nucleopolyhedroviruses , Polymorphism, Single Nucleotide , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/isolation & purification , Animals , Nanopore Sequencing/methods , Bombyx/virology , High-Throughput Nucleotide Sequencing/methods , Genome, Viral
3.
Arch Microbiol ; 206(6): 248, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713383

Describing the microbial community within the tumour has been a key aspect in understanding the pathophysiology of the tumour microenvironment. In head and neck cancer (HNC), most studies on tissue samples have only performed 16S rRNA short-read sequencing (SRS) on V3-V5 region. SRS is mostly limited to genus level identification. In this study, we compared full-length 16S rRNA long-read sequencing (FL-ONT) from Oxford Nanopore Technology (ONT) to V3-V4 Illumina SRS (V3V4-Illumina) in 26 HNC tumour tissues. Further validation was also performed using culture-based methods in 16 bacterial isolates obtained from 4 patients using MALDI-TOF MS. We observed similar alpha diversity indexes between FL-ONT and V3V4-Illumina. However, beta-diversity was significantly different between techniques (PERMANOVA - R2 = 0.131, p < 0.0001). At higher taxonomic levels (Phylum to Family), all metrics were more similar among sequencing techniques, while lower taxonomy displayed more discrepancies. At higher taxonomic levels, correlation in relative abundance from FL-ONT and V3V4-Illumina were higher, while this correlation decreased at lower levels. Finally, FL-ONT was able to identify more isolates at the species level that were identified using MALDI-TOF MS (75% vs. 18.8%). FL-ONT was able to identify lower taxonomic levels at a better resolution as compared to V3V4-Illumina 16S rRNA sequencing.


Bacteria , Head and Neck Neoplasms , Nanopore Sequencing , RNA, Ribosomal, 16S , Humans , RNA, Ribosomal, 16S/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/microbiology , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Microbiota/genetics , High-Throughput Nucleotide Sequencing , Middle Aged , Sequence Analysis, DNA , Male , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Aged , Adult , Phylogeny
4.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Article En | MEDLINE | ID: mdl-38758523

2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping and exoribonuclease (DXO) protein, and the biogenesis and specificity of rRNA. Recent advancements in single-molecule sequencing techniques for long read RNA sequencing data offered by Oxford Nanopore technologies have enabled the direct detection of RNA modifications from sequencing data. In this study, we propose a bio-computational framework, Nm-Nano, for predicting the presence of Nm sites in direct RNA sequencing data generated from two human cell lines. The Nm-Nano framework integrates two supervised machine learning (ML) models for predicting Nm sites: Extreme Gradient Boosting (XGBoost) and Random Forest (RF) with K-mer embedding. Evaluation on benchmark datasets from direct RNA sequecing of HeLa and HEK293 cell lines, demonstrates high accuracy (99% with XGBoost and 92% with RF) in identifying Nm sites. Deploying Nm-Nano on HeLa and HEK293 cell lines reveals genes that are frequently modified with Nm. In HeLa cell lines, 125 genes are identified as frequently Nm-modified, showing enrichment in 30 ontologies related to immune response and cellular processes. In HEK293 cell lines, 61 genes are identified as frequently Nm-modified, with enrichment in processes like glycolysis and protein localization. These findings underscore the diverse regulatory roles of Nm modifications in metabolic pathways, protein degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at https://github.com/Janga-Lab/Nm-Nano.


Machine Learning , Sequence Analysis, RNA , Transcriptome , Humans , Methylation , Sequence Analysis, RNA/methods , HeLa Cells , Nanopore Sequencing/methods , HEK293 Cells , Computational Biology/methods , RNA Processing, Post-Transcriptional , Nanopores , Software , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Nat Commun ; 15(1): 4049, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744925

Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for RNA modification identification. However, concurrently detecting multiple types of modifications in a single DRS sample remains a challenge. Here, we develop TandemMod, a transferable deep learning framework capable of detecting multiple types of RNA modifications in single DRS data. To train high-performance TandemMod models, we generate in vitro epitranscriptome datasets from cDNA libraries, containing thousands of transcripts labeled with various types of RNA modifications. We validate the performance of TandemMod on both in vitro transcripts and in vivo human cell lines, confirming its high accuracy for profiling m6A and m5C modification sites. Furthermore, we perform transfer learning for identifying other modifications such as m7G, Ψ, and inosine, significantly reducing training data size and running time without compromising performance. Finally, we apply TandemMod to identify 3 types of RNA modifications in rice grown in different environments, demonstrating its applicability across species and conditions. In summary, we provide a resource with ground-truth labels that can serve as benchmark datasets for nanopore-based modification identification methods, and TandemMod for identifying diverse RNA modifications using a single DRS sample.


Oryza , Sequence Analysis, RNA , Humans , Sequence Analysis, RNA/methods , Oryza/genetics , RNA Processing, Post-Transcriptional , Nanopores , RNA/genetics , RNA/metabolism , Nanopore Sequencing/methods , Deep Learning , Inosine/metabolism , Inosine/genetics , Transcriptome/genetics
6.
J Infect ; 88(6): 106164, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692359

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
7.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38713194

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Genome, Bacterial , Nanopores , High-Throughput Nucleotide Sequencing/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics , Sequence Analysis, DNA/methods , Pseudomonas aeruginosa/genetics , Nanopore Sequencing/methods , DNA, Bacterial/genetics , Klebsiella pneumoniae/genetics , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteria/classification , Humans
9.
Methods Mol Biol ; 2807: 209-227, 2024.
Article En | MEDLINE | ID: mdl-38743231

The post-transcriptional processing and chemical modification of HIV RNA are understudied aspects of HIV virology, primarily due to the limited ability to accurately map and quantify RNA modifications. Modification-specific antibodies or modification-sensitive endonucleases coupled with short-read RNA sequencing technologies have allowed for low-resolution or limited mapping of important regulatory modifications of HIV RNA such as N6-methyladenosine (m6A). However, a high-resolution map of where these sites occur on HIV transcripts is needed for detailed mechanistic understanding. This has recently become possible with new sequencing technologies. Here, we describe the direct RNA sequencing of HIV transcripts using an Oxford Nanopore Technologies sequencer and the use of this technique to map m6A at near single nucleotide resolution. This technology also provides the ability to identify splice variants with long RNA reads and thus, can provide high-resolution RNA modification maps that distinguish between overlapping splice variants. The protocols outlined here for m6A also provide a powerful paradigm for studying any other RNA modifications that can be detected on the nanopore platform.


Adenosine , Nanopore Sequencing , RNA, Messenger , RNA, Viral , Nanopore Sequencing/methods , RNA, Viral/genetics , Methylation , Humans , Adenosine/analogs & derivatives , Adenosine/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , HIV-1/genetics , RNA Processing, Post-Transcriptional , High-Throughput Nucleotide Sequencing/methods , HIV Infections/virology , HIV Infections/genetics , HIV/genetics
10.
J Transl Med ; 22(1): 451, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741136

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS: We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS: Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS: Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.


DNA Methylation , Muscular Dystrophy, Facioscapulohumeral , Whole Genome Sequencing , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Humans , DNA Methylation/genetics , Haplotypes/genetics , Male , Case-Control Studies , Homeodomain Proteins/genetics , Female , Nanopore Sequencing/methods , Adult
11.
Microb Genom ; 10(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38683195

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.


Feces , Gastrointestinal Microbiome , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Gastrointestinal Microbiome/genetics , Feces/virology , Feces/microbiology , Nanopores , Nanopore Sequencing/methods , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Virome/genetics , Sequence Analysis, DNA/methods
12.
Water Res ; 256: 121623, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657304

Wastewater genomic sequencing stands as a pivotal complementary tool for viral surveillance in populations. While long-read Nanopore sequencing is a promising platform to provide real-time genomic data, concerns over the sequencing accuracy of the earlier Nanopore versions have somewhat restrained its widespread application in wastewater analysis. Here, we evaluate the latest improved version of Nanopore sequencing (R10.4.1), using SARS-CoV-2 as the model infectious virus, to demonstrate its effectiveness in wastewater viral monitoring. By comparing amplicon lengths of 400 bp and 1200 bp, we revealed that shorter PCR amplification is more suitable for wastewater samples due to viral genome fragmentation. Utilizing mock wastewater samples, we validated the reliability of Nanopore sequencing for variant identification by comparing it with Illumina sequencing results. The strength of Nanopore sequencing in generating real-time genomic data for providing early warning signals was also showcased, indicating that as little as 0.001 Gb of data can provide accurate results for variant prevalence. Our evaluation also identified optimal alteration frequency cutoffs (>50 %) for precise mutation profiling, achieving >99 % precision in detecting single nucleotide variants (SNVs) and insertions/deletions (indels). Monitoring two major wastewater treatment plants in Hong Kong from September 2022 to April 2023, covering over 4.5 million population, we observed a transition in dominant variants from BA.5 to XBB lineages, with XBB.1.5 being the most prevalent variants. Mutation detection also highlighted the potential of wastewater Nanopore sequencing in uncovering novel mutations and revealed links between signature mutations and specific variants. This study not only reveals the environmental implications of Nanopore sequencing in SARS-CoV-2 surveillance but also underscores its potential in broader applications including environmental health monitoring of other epidemic viruses, which could significantly enhance the field of wastewater-based epidemiology.


Nanopore Sequencing , SARS-CoV-2 , Wastewater , Wastewater/virology , SARS-CoV-2/genetics , Nanopore Sequencing/methods , COVID-19/virology , COVID-19/epidemiology , Genome, Viral
13.
J Clin Microbiol ; 62(5): e0024624, 2024 May 08.
Article En | MEDLINE | ID: mdl-38563782

Next-generation sequencing has evolved as a powerful tool, with applications that extend from diagnosis to public health surveillance and outbreak investigations. Short-read sequencing, using primarily Illumina chemistry, has been the prevailing approach. Single-molecule sensing and long-read sequencing using Oxford Nanopore Technologies (ONT) has witnessed a breakthrough in the evolution of the technology, performance, and applications in the past few years. In this issue of the Journal of Clinical Microbiology, Bogaerts et al. (https://doi.org/10.1128/jcm.01576-23) describe the utility of the latest ONT sequencing technology, the R10.4.1, in bacterial outbreak investigations. The authors demonstrate that ONT R10.4.1 technology can be comparable to Illumina sequencing for single-nucleotide polymorphism-based phylogeny. The authors emphasize that the reproducibility between ONT and Illumina technologies could facilitate collaborations among laboratories utilizing different sequencing platforms for outbreak investigations.


High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Disease Outbreaks , Nanopores , Nanopore Sequencing/methods , Public Health , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Polymorphism, Single Nucleotide
14.
Nucleic Acids Res ; 52(9): 5166-5178, 2024 May 22.
Article En | MEDLINE | ID: mdl-38647072

L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.


Long Interspersed Nucleotide Elements , Mice, Inbred C57BL , Animals , Long Interspersed Nucleotide Elements/genetics , Mice , Cell Line, Tumor , Female , Retroelements/genetics , Sequence Analysis, DNA/methods , Humans , Nanopore Sequencing/methods , Genome/genetics
15.
J Infect ; 88(6): 106166, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670268

BACKGROUND: Nanopore sequencing, known for real-time analysis, shows promise for rapid clinical infection diagnosis but lacks effective assays for bloodstream infections (BSIs). METHODS: We prospectively assessed the performance of a novel nanopore targeted sequencing (NTS) assay in identifying pathogens and predicting antibiotic resistance in BSIs, analyzing 387 blood samples from December 2021 to April 2023. RESULTS: The positivity rate for NTS (69.5 %, 269/387) nearly matches that of metagenomic next-generation sequencing (mNGS) (74.7 %, 289/387; p = 0.128) and surpasses the positivity rate of conventional blood culture (BC) (33.9 %, 131/387; p < 0.01). Frequent pathogens detected by NTS included Klebsiella pneumoniae (n = 54), Pseudomonas aeruginosa (n = 36), Escherichia coli (n = 36), Enterococcus faecium(n = 30), Acinetobacter baumannii(n = 26), Staphylococcus aureus(n = 23), and Human cytomegalovirus (n = 37). Against a composite BSI diagnostic standard, NTS demonstrated a sensitivity and specificity of 84.0 % (95 % CI 79.5 %-87.7 %) and 90.1 % (95 % CI 81.7 %-88.5 %), respectively. The concordance between NTS and mNGS results (the percentage of total cases where both either detected BSI-related pathogens or were both negative) was 90.2 % (359/387), whereas the consistency between NTS and BC was only 60.2 % (233/387). In 80.6 % (50/62) of the samples with identical pathogens identified by both NTS tests and BCs, the genotypic resistance identified by NTS correlated with culture-confirmed phenotypic resistance. Using NTS, 95 % of samples can be tested and analyzed in approximately 7 h, allowing for early patient diagnosis. CONCLUSIONS: NTS is rapid, sensitive, and efficient for detecting BSIs and drug-resistant genes, making it a potential preferred diagnostic tool for early infection identification in critically ill patients.


Molecular Diagnostic Techniques , Nanopore Sequencing , Sensitivity and Specificity , Humans , Prospective Studies , Molecular Diagnostic Techniques/methods , Nanopore Sequencing/methods , Bacteremia/diagnosis , Bacteremia/microbiology , Male , High-Throughput Nucleotide Sequencing/methods , Female , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Middle Aged , Aged , Sepsis/diagnosis , Sepsis/microbiology , Adult
16.
Sci Rep ; 14(1): 9250, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649415

Canine distemper virus (CDV) is a highly contagious virus that affects domestic and wild animals, causing severe illness with high mortality rates. Rapid monitoring and sequencing can provide valuable information about circulating CDV strains, which may foster effective vaccination strategies and the successful integration of these into conservation programs. During two site visits in Bangladesh in 2023, we tested a mobile, deployable genomic surveillance setup to explore the genetic diversity and phylogenetic patterns of locally circulating CDV strains. We collected and analysed 355 oral swab samples from stray dogs in Rajshahi and Chattogram cities, Bangladesh. CDV-specific real-time RT-PCR was performed to screen the samples. Out of the 355 samples, 7.4% (10/135) from Rajshahi city and 0.9% (2/220) from Chattogram city tested positive for CDV. We applied a real-time RT-PCR assay and a pan-genotype CDV-specific amplicon-based Nanopore sequencing technology to obtain the near-completes. Five near-complete genome sequences were generated, with phylogenetic relation to the India-1/Asia-5 lineage previously identified in India. This is the first study to provide genomic data on CDV in Bangladesh and the first demonstration of a mobile laboratory setup as a powerful tool in rapid genomic surveillance and risk assessment for CDV in low resource regions.


Distemper Virus, Canine , Distemper , Nanopore Sequencing , Phylogeny , Distemper Virus, Canine/genetics , Distemper Virus, Canine/isolation & purification , Distemper Virus, Canine/classification , Bangladesh/epidemiology , Animals , Dogs , Distemper/virology , Distemper/epidemiology , Nanopore Sequencing/methods , Genome, Viral , Real-Time Polymerase Chain Reaction/methods , Genotype , RNA, Viral/genetics
17.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658857

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


DNA, Circular , Genome, Plant , Retroelements , Solanum lycopersicum , Terminal Repeat Sequences , Solanum lycopersicum/genetics , DNA, Circular/genetics , Plant Breeding , Nanopore Sequencing/methods , Genetic Introgression , Sequence Analysis, DNA/methods , DNA, Plant/genetics
18.
Genome Res ; 34(3): 454-468, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38627094

Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.


Nanopores , Humans , Sequence Analysis, DNA/methods , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Software , Genomics/methods
19.
Bioinformatics ; 40(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38603597

MOTIVATION: The Oxford Nanopore Technologies (ONT) ReadUntil API enables selective sequencing, which aims to selectively favor interesting over uninteresting reads, e.g. to deplete or enrich certain genomic regions. The performance gain depends on the selective sequencing decision-making algorithm (SSDA) which decides whether to reject a read, stop receiving a read, or wait for more data. Since real runs are time-consuming and costly, simulating the ONT sequencer with support for the ReadUntil API is highly beneficial for comparing and optimizing new SSDAs. Existing software like MinKNOW and UNCALLED only return raw signal data, are memory-intensive, require huge and often unavailable multi-fast5 files (≥100GB) and are not clearly documented. RESULTS: We present the ONT device simulator SimReadUntil that takes a set of full reads as input, distributes them to channels and plays them back in real time including mux scans, channel gaps and blockages, and allows to reject reads as well as stop receiving data from them. Our modified ReadUntil API provides the basecalled reads rather than the raw signal, reducing computational load and focusing on the SSDA rather than on basecalling. Tuning the parameters of tools like ReadFish and ReadBouncer becomes easier because a GPU for basecalling is no longer required. We offer various methods to extract simulation parameters from a sequencing summary file and adapt ReadFish to replicate one of their enrichment experiments. SimReadUntil's gRPC interface allows standardized interaction with a wide range of programming languages. AVAILABILITY AND IMPLEMENTATION: Code and fully worked examples are available on GitHub (https://github.com/ratschlab/sim_read_until).


Algorithms , Benchmarking , Software , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods
20.
Bioinformatics ; 40(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38613848

MOTIVATION: Identifying chromatin accessibility is one of the key steps in studying the regulation of eukaryotic genomes. The combination of exogenous methyltransferase and nanopore sequencing provides an strategy to identify open chromatin over long genomic ranges at the single-molecule scale. However, endogenous methylation, non-open-chromatin-specific exogenous methylation and base-calling errors limit the accuracy and hinders its application to complex genomes. RESULTS: We systematically evaluated the impact of these three influence factors, and developed a model-based computational method, methyltransferase accessible genome region finder (MAGNIFIER), to address the issues. By incorporating control data, MAGNIFIER attenuates the three influence factors with data-adaptive comparison strategy. We demonstrate that MAGNIFIER is not only sensitive to identify the open chromatin with much improved accuracy, but also able to detect the chromatin accessibility of repetitive regions that are missed by NGS-based methods. By incorporating long-read RNA-seq data, we revealed the association between the accessible Alu elements and non-classic gene isoforms. AVAILABILITY AND IMPLEMENTATION: Freely available on web at https://github.com/Goatofmountain/MAGNIFIER.


Chromatin , Genome, Human , Nanopore Sequencing , Humans , Chromatin/metabolism , Chromatin/chemistry , Nanopore Sequencing/methods , Methyltransferases/metabolism , DNA Methylation
...