Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835111

RESUMEN

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription-quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1ß, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-ß1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation.


Asunto(s)
Pérdida de Hueso Alveolar , FN-kappa B , Nanosferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Ratas , Pérdida de Hueso Alveolar/tratamiento farmacológico , Proceso Alveolar , Glicoles , Inflamación/metabolismo , Nanosferas/uso terapéutico , FN-kappa B/química , FN-kappa B/farmacología , Oligodesoxirribonucleótidos/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas Wistar , Microtomografía por Rayos X
2.
ACS Appl Bio Mater ; 6(2): 722-732, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36626248

RESUMEN

The rational design of cancer theranostics with natural diagnostic information and therapeutic behavior has been considered to be a big challenge, since common theranostics from photothermal and photodynamic therapy need to be activated with external stimuli of photoirradiation to enable the chemotherapeutic effects. In this contribution, we have designed and synthesized a series of simple theranostic agents, TPA-N-n (n = 4, 8, 12), which could accumulate at the tumor site over 48 h and indicate superior antiproliferative performance in vivo. TPA-N-n was constructed with electron donor triphenylamine-acceptor benzothiadiazole-mitochondria-targeting moiety pyridinium. Complex TPA-N-8 indicated the best cytotoxicity to cancerous HeLa cells, with an IC50 value of 4.3 µM, and could self-assemble to a nanosphere with a size of 161.2 nm in the DMSO/PBS solution. It is worth noting that TPA-N-8 could accumulate in the mitochondria and produce major ROS species O2•- and OH• as well as small amounts of 1O2 without photoirradiation. Oxidative DNA damage is initiated due to the imbalance of intracellular redox homeostasis from the significant ROS storm. Multimodal synergistic therapy for HeLa cells was activated, as the PINK1-mediated mitophagy from the damaged mitochondria and DNA damage responsive (DDR) induced necroptosis and autophagy. This work not only provided a successful D-A type theranostic agent with superior anticancer performance from multimodal synergistic therapy but also further demonstrated the high efficacy of a mitochondria-targeting strategy for cancer treatment.


Asunto(s)
Mitocondrias , Nanosferas , Neoplasias , Humanos , Células HeLa , Mitocondrias/efectos de los fármacos , Nanosferas/química , Nanosferas/uso terapéutico , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122203

RESUMEN

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Asunto(s)
Nanosferas , Medicina de Precisión , Refractometría , Molibdeno , Nanosferas/uso terapéutico , Medicina de Precisión/instrumentación , Agua
4.
ACS Appl Mater Interfaces ; 14(33): 37493-37503, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969502

RESUMEN

We developed hybrid nanospheres comprised of two of the most important biomolecules in nature, DNA and proteins, which have excellent biocompatibility, high drug payload capacity, in vivo imaging ability, and in vitro/in vivo cancer targeting capability. The synthesis can be done in a facile one-pot assembly system that includes three steps: step-growth polymerization of two DNA oligomers, addition of streptavidin to assemble spherical hybrid nanostructures, and functionalization of hybrid nanospheres with biotinylated aptamers. To test the feasibility of cancer targeting and drug-loading capacity of the hybrid nanospheres, MUC1-specific aptamers (MA3) were conjugated to nanosphere surfaces (apt-nanospheres), and doxorubicin (Dox) was loaded into nanospheres by DNA intercalation. The successful construction of nanospheres and apt-nanospheres was confirmed by agarose gel electrophoresis and dynamic light scattering (DLS). Their uniform spherical morphology was confirmed by transmission electron microscopy (TEM). Fluorescence spectra of nanospheres demonstrated high Dox-loading capability and slow-release characteristics. In vitro MUC1-specific binding of the apt-nanospheres was confirmed by flow cytometry and confocal microscopy. Dox-loaded apt-nanospheres significantly increased cytotoxicity of the MUC1-positive cancer cells due to aptamer-mediated selective internalization, as shown via cell viability assays. Apt-nanospheres could also be imaged in vivo through the synthesis of hybrid nanospheres using fluorescent dye-conjugated DNA strands. Finally, in vivo specific targeting ability of apt-nanospheres was confirmed in a MUC1-positive 4T1 tumor-bearing mouse model, whereas apt-nanospheres did not cause any sign of systemic toxicity in normal mice. Taken together, our self-assembled DNA-streptavidin hybrid nanospheres show promise as a biocompatible cancer targeting material for contemporary nanomedical technology.


Asunto(s)
Aptámeros de Nucleótidos , Nanosferas , Neoplasias , Animales , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , ADN/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Ratones , Nanosferas/química , Nanosferas/uso terapéutico , Estreptavidina
5.
Acta Biomater ; 144: 81-95, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35288310

RESUMEN

Ulcerative colitis (UC) is one type of inflammatory bowel disease (IBD) and lactoferrin (LF) is a promising protein drug to treat UC. However, targeted LF delivery to optimize bioavailability, targeting and effectiveness remains a challenge. Here, we report an effective strategy to fabricate silk sericin nanospheres systems for the delivery of recombinant human lactoferrin (SS-NS-rhLF). The system is based on the use of optimized transgenic silkworms to generate genetically engineered silk fibers (rhLF-silks). The rhLF silks were used for fabricating SS-NS-rhLF by ethanol precipitation. The SS-NS-rhLF were stable with a spherical morphology with an average diameter of 123 nm. The negatively charged sericins in a pH ≥ 5.5 environment achieved specific targeting of the SS-NS-rhLF to positively charged colonic sites. The SS-NS-rhLF achieved efficient uptake by cells in the inflamed colon of mice when compared to free lactoferrin in solution (SOL-rhLF). Furthermore, oral administration of the SS-NS-rhLF with low dose of rhLF significantly relived symptoms of UC in mice and achieved comparable therapeutic effect to the high dose of SOL-rhLF by supporting the reformation of cell structure and length of colon tissue, reducing the release of inflammatory factors, inhibiting the activation of the NF-κB inflammatory pathway, and maintaining a stable intestinal microbial population in mice. These results showed that the SS-NS-rhLF is a promising system for colitis treatment. STATEMENT OF SIGNIFICANCE: Targeting and effective delivery of multiple biological functional protein human lactoferrin (rhLF) is a promising strategy to treat ulcerative colitis in the clinic. Here, rhLF-transgenic silk cocoons were used to fabricate a rhLF-sericin nanosphere delivery system (SS-NS-rhLF). The fabricated SS-NS-rhLF showed identical spherical morphology, stable structure, sustainable rhLF release, efficient cell uptake and negative charge in an environment of pH above 5.5, thus realized the specific targeting to the positively charged colonic sites to treat UC mice through oral administration. The therapeutic effect of SS-NS-rhLF with a low rhLF dose in the UC mice was comparable to the high dose of free rhLF treatment in solution form, suggesting that the SS-NS-rhLF is a promising system for colitis treatment.


Asunto(s)
Colitis Ulcerosa , Nanosferas , Sericinas , Animales , Animales Modificados Genéticamente , Colitis Ulcerosa/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Lactoferrina/metabolismo , Lactoferrina/farmacología , Ratones , Nanosferas/uso terapéutico , Sericinas/química , Sericinas/farmacología , Seda
6.
Nat Commun ; 13(1): 539, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087022

RESUMEN

Metallic and semimetallic mesoporous frameworks are of great importance owing to their unique properties and broad applications. However, semimetallic mesoporous structures cannot be obtained by the traditional template-mediated strategies due to the inevitable hydrolytic reaction of semimetal compounds. Therefore, it is yet challenging to fabricate mesoporous semimetal nanostructures, not even mention controlling their pore sizes. Here we develop a facile and robust selective etching route to synthesize monodispersed mesoporous antimony nanospheres (MSbNSs). The pore sizes of MSbNSs are tunable by carefully controlling the partial oxidation of Sb nuclei and the selective etching of the as-formed Sb2O3. MSbNSs show a wide absorption from visible to second near-infrared (NIR-II) region. Moreover, PEGylated MSbNSs are degradable and the degradation mechanism is further explained. The NIR-II photothermal performance of MSbNSs is promising with a high photothermal conversion efficiency of ~44% and intensive NIR-II photoacoustic signal. MSbNSs show potential as multifunctional nanomedicines for NIR-II photoacoustic imaging guided synergistic photothermal/chemo therapy in vivo. Our selective etching process would contribute to the development of various semimetallic mesoporous structures and efficient multimodal nanoplatforms for theranostics.


Asunto(s)
Antimonio/química , Antimonio/farmacología , Nanosferas/química , Nanosferas/uso terapéutico , Medicina de Precisión/métodos , Animales , Diagnóstico por Imagen , Sistemas de Liberación de Medicamentos , Quimioterapia , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Nanoestructuras/química , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia , Nanomedicina Teranóstica/métodos
7.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948105

RESUMEN

Cell penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system. However, hybrids with lipids or polymers make the metabolism much more sophisticated and even more difficult to determine. In this study, we present a continuous sequence of 18 amino acids (FFAARTMIWY(d-P)GAWYKRI). It forms nanospheres around 170 nm, which increase slightly after loading with siRNA and DOX. Notably, it can be internalized by cancer cells mainly through electronic interactions and PD-L1-mediated endocytosis. Compared with poly-l-lysine and polyethyleneimine, it has a much higher efficiency (about four times) of gene transduction while lowering toxicity. In the treatment of cancer, it causes apoptosis (21%) and inhibits the expression of SURVIVIN protein in vitro. In vivo, it shows good biocompatibility as there are no changes in mice's body weight. When administering peptide-siRNA-DOX, tumor growth is inhibited the most (about three times). These results above prove the sequence to be a good candidate for gene therapy and drug delivery.


Asunto(s)
Antígeno B7-H1/metabolismo , Péptidos de Penetración Celular , Doxorrubicina , Sistemas de Liberación de Medicamentos , Endocitosis , Nanosferas , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño , Animales , Antígeno B7-H1/genética , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanosferas/química , Nanosferas/uso terapéutico , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Survivin/genética , Survivin/metabolismo
8.
ACS Appl Mater Interfaces ; 13(37): 43925-43936, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499485

RESUMEN

Chemodynamic therapy (CDT) that utilizes Fenton-type reactions to convert endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) is a promising strategy in anticancer treatment, but the overexpression of glutathione (GSH) and limited endogenous H2O2 make the efficiency of CDT unsatisfactory. Here, an intelligent nanoplatform CuO2@mPDA/DOX-HA (CPPDH), which induced the depletion of GSH and the self-supply of H2O2, was proposed. When CPPDH entered tumor cells through the targeting effect of hyaluronic acid (HA), a release of Cu2+ and produced H2O2 were triggered by the acidic environment of lysosomes. Then, the Cu2+ was reduced by GSH to Cu+, and the Cu+ catalyzed H2O2 to produce •OH. The generation of •OH could be distinctly enhanced by the GSH depletion and H2O2 self-sufficiency. Besides, an outstanding photothermal therapy (PTT) effect could be stimulated by NIR irradiation on mesoporous polydopamine (mPDA). Meanwhile, mPDA was an excellent photoacoustic reagent, which could monitor the delivery of nanocomposite materials through photoacoustic (PA) imaging. Moreover, the successful delivery of doxorubicin (DOX) realized the integration of chemotherapy, PTT, and CDT. This strategy could solve the problem of insufficient CDT efficacy caused by the limited H2O2 and overexpression of GSH. This multifunctional nanoplatform may open a broad path for self-boosting CDT and synergistic therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Nanosferas/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Cobre/química , Cobre/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/síntesis química , Quimioterapia , Células HeLa , Humanos , Ácido Hialurónico/química , Indoles/química , Nanosferas/química , Neoplasias/metabolismo , Terapia Fototérmica , Polímeros/química , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico
9.
J Nutr Biochem ; 88: 108555, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249186

RESUMEN

Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as an herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we investigated the functional role of nanospheres loaded with curcumin (nCur) with regard to the motility of gut epithelial HCT116 cells and enterocyte migration along the crypt-villus axis. nCur significantly increased the motility of HCT116 cells and showed much higher migration efficacy than the curcumin. nCur stimulated the small GTPases Rac1 and the phosphorylation of protein kinase C, responsible for the distinctive activation of the mitogen-activated protein kinases. Interestingly, nCur significantly induced the expression of α-actinin, profilin-1, and filamentous (F)-actin as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In mouse models of gut epithelial migration, treatment with nCur had an enhancing effect on the movement of enterocytes along the crypt-villus axis and the expression of cytoskeletal reorganization-related factors. These results indicate that nCur is a functional agent that promotes gut epithelial motility through F-actin-related migration signaling events.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/efectos de los fármacos , Curcumina/farmacología , Células Epiteliales/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Nanosferas/uso terapéutico , Animales , Tracto Gastrointestinal/metabolismo , Células HCT116 , Humanos , Masculino , Ratones , FN-kappa B/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Methods Mol Biol ; 2207: 151-161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33113134

RESUMEN

Common chemotherapeutic drugs exhibit no specificity for cancer cells and destroy simultaneously healthy cells exhibiting high toxicity and reduced efficacy. The use of nanotechnology, especially of drug delivery systems to the size of the nanoscale, provides rational drug design solutions. Such nanomaterials may have a range of desired characteristics (lack of toxicity, response to certain characteristics of the cancer cells, antimicrobial properties, specific activity, etc.) in order to achieve targeted cancer therapy. In this chapter, polymeric systems with core-shell structure are synthesized, characterized, and studied as potent drug delivery devices for targeted cancer therapy. These polymeric systems are based on natural polysaccharides like cellulose, chitosan, and their derivatives, in combination with synthetic polymer. Polymethylmethacrylate (PMMA) nanospheres are used as a core in order to coat the surface with multiple layers of polysaccharides via layer-by-layer deposition. This design is advantageous due to the use of water as the appropriate solvent. Fabricated polymeric carriers are characterized structurally by AT-IR spectroscopy and morphologically by transmission (TEM) and scanning electron microscopy (SEM). Finally, daunorubicin, an anticancer agent, was encapsulated as a drug model into the carriers.


Asunto(s)
Antineoplásicos , Celulosa/química , Quitosano/química , Portadores de Fármacos , Nanosferas , Neoplasias/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Nanosferas/química , Nanosferas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/patología , Polimetil Metacrilato/química
11.
Theranostics ; 10(23): 10513-10530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929363

RESUMEN

Cancer cells immersed in inherent oxidative stress are more vulnerable to exogenous oxidative damages than normal cells. Reactive oxygen species (ROS)-mediated oxidation therapy preferentially aggravating tumor oxidative stress to disrupt redox homeostasis, has emerged as an effective and specific anticancer treatment. Herein, following an ingenious strategy of "broaden sources and reduce expenditure", we designed a versatile tumor-specific oxidative stress nanoamplifier enabling economized photodynamic therapy (PDT), to achieve synergistic oxidative stress explosion for superior oxidation therapy. Methods: Cinnamaldehyde (CA) as a therapeutic ROS generator was first conjugated to hyaluronic acid (HA) through acid-labile hydrazone bond to synthesize tailored amphiphilic HA@CA conjugates, which could surprisingly self-assemble into uniform nanofibers in aqueous media. Photosensitizer protoporphyrin (PpIX) was efficiently encapsulated into HA@CA nanofibers and transformed HA@CA nanofibers to final spherical HA@CAP. Results: With beneficial pH-responsiveness and morphology transformation, improved bioavailability and selective tumor accumulation, HA@CAP combining ROS-based dual chemo/photodynamic treatment modalities could induce cytotoxic ROS generation in a two-pronged approach to amplify tumor oxidative stress, termed "broaden sources". Moreover, utilizing CA-induced H2O2 production and cascaded Fenton reaction in mitochondria to consume intracellular overloaded Fe(II), HA@CAP could skillfully block endogenic heme biosynthesis pathway on site to restrain undesired elimination of PpIX for economized PDT, termed "reduce expenditure". Both in vitro and in vivo results demonstrated the superior antitumor performance of HA@CAP. Conclusion: This study offered an inspiring strategy of "broaden sources and reduce expenditure" to specifically boost tumor oxidative stress for reinforced oxidation therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/farmacocinética , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacocinética , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Línea Celular Tumoral/trasplante , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Sinergismo Farmacológico , Femenino , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacocinética , Ratones , Células 3T3 NIH , Nanosferas/química , Nanosferas/efectos de la radiación , Nanosferas/uso terapéutico , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Protoporfirinas/administración & dosificación , Protoporfirinas/química , Protoporfirinas/metabolismo , Protoporfirinas/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Nanomedicine ; 15: 5545-5559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848387

RESUMEN

INTRODUCTION: Although carbon nanospheres (CNPs) are promising nanomaterials in cancer treatment, how they affect prostate cancer (PCa) remains unclear. METHODS: In this study, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were used to confirm the successful synthesis of CNPs. CCK-8, flow cytometry, Transwell, wound healing, Western blot and immunohistochemistry (IHC) assays were performed to evaluate the antitumor effect of CNPs toward the two kinds of prostate cancer cell lines PC3 and DU145. RESULTS: Our results showed that CNPs inhibited cell growth, invasion, and migration and induced apoptosis and autophagy in PCa cells. Multifactor detection of a single Akt phosphorylation pathway and Western blot results suggested the suppression of 4E-BP1 in PCa cells after incubation with CNPs. The results from animal experiments also suggested the antitumor effect of CNPs and reduced 4E-BP1 expression in PCa tissue samples from BALB/c nude mice administered a local subcutaneous injection of CNPs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Carbono/farmacología , Proteínas de Ciclo Celular/metabolismo , Nanosferas/química , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Autofagia/efectos de los fármacos , Carbono/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Rastreo , Nanosferas/uso terapéutico , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Espectrometría Raman , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Nanomedicine ; 15: 2903-2920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425523

RESUMEN

BACKGROUND: The development of highly efficient nanoparticles to convert light to heat for anti-cancer applications is quite a challenging field of research. METHODS: In this study, we synthesized unique pimpled gold nanospheres (PGNSs) for plasmonic photothermal therapy (PPTT). The light-to-heat conversion capability of PGNSs and PPTT damage at the cellular level were investigated using a tissue phantom model. The ability of PGNSs to induce robust cellular damage was studied during cytotoxicity tests on colorectal adenocarcinoma (DLD-1) and fibroblast cell lines. Further, a numerical model of plasmonic (COMSOL Multiphysics) properties was used with the PPTT experimental assays. RESULTS: A low cytotoxic effect of thiolated polyethylene glycol (SH-PEG400-SH-) was observed which improved the biocompatibility of PGNSs to maintain 89.4% cell viability during cytometry assays (in terms of fibroblast cells for 24 hrs at a concentration of 300 µg/mL). The heat generated from the nanoparticle-mediated phantom models resulted in ΔT=30°C, ΔT=23.1°C and ΔT=21°C for the PGNSs, AuNRs, and AuNPs, respectively (at a 300 µg/mL concentration and for 325 sec). For the in vitro assays of PPTT on cancer cells, the PGNS group induced a 68.78% lethality (apoptosis) on DLD-1 cells. Fluorescence microscopy results showed the destruction of cell membranes and nuclei for the PPTT group. Experiments further revealed a penetration depth of sufficient PPTT damage in a physical tumor model after hematoxylin and eosin (H&E) staining through pathological studies (at depths of 2, 3 and 4 cm). Severe structural damages were observed in the tissue model through an 808-nm laser exposed to the PGNSs. CONCLUSION: Collectively, such results show much promise for the use of the present PGNSs and photothermal therapy for numerous anti-cancer applications.


Asunto(s)
Nanosferas/química , Nanosferas/uso terapéutico , Fototerapia/métodos , Adenocarcinoma/patología , Adenocarcinoma/terapia , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Fibroblastos , Oro/química , Humanos , Rayos Láser , Neoplasias/terapia , Fantasmas de Imagen , Polietilenglicoles/química
14.
Adv Biosyst ; 4(4): e1900284, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32293165

RESUMEN

Gold nanoparticles can act as photothermal agents to generate local tumor heating and subsequent depletion upon laser exposure. Herein, photothermal heating of four gold nanoparticles and the resulting induced cancer cell death are systematically assessed, within extra- or intracellular localizations. Two state-of-the-art gold nanorods are compared with small nanospheres (single-core) and nanoraspberries (multicore). Heat generation is measured in water dispersion and in cancer cells, using lasers at wavelengths of 680, 808, and 1064 nm, covering the entire range used in photothermal therapy, defined as near infrared first (NIR-I) and second (NIR-II) windows, with NIR-II offering more tissue penetration. When dispersed in water, gold nanospheres provide no significant heating, gold nanorods are efficient in NIR-I, and only gold nanoraspberries are still heating in NIR-II. However, in cells, due to endosomal confinement, all nanoparticles present an absorption red-shift translating visible and NIR-I absorbing nanoparticles into effective NIR-I and NIR-II nanoheaters, respectively. The gold nanorods then become competitive with the multicore nanoparticles (nanoraspberries) in NIR-II. Similarly, once in cells, gold nanospheres can be envisaged for NIR-I heating. Remarkably, nanoraspberries are efficient nanoheaters, whatever the laser applied, and the extra- versus intra-cellular localization demonstrates treatment versatility.


Asunto(s)
Endosomas/metabolismo , Oro , Nanopartículas del Metal , Nanosferas , Nanotubos/química , Neoplasias , Terapia Fototérmica , Oro/química , Oro/farmacocinética , Oro/farmacología , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanosferas/química , Nanosferas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/terapia , Células PC-3
15.
Nanoscale ; 12(17): 9590-9602, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314992

RESUMEN

Inflammatory bowel disease (IBD) refers to progressive inflammatory disorders that impair the gastrointestinal tract's structure and function. Given their selective accumulation in inflamed tissues, nanoparticles are promising drug delivery systems for IBD treatment. The hypothesis here was that drug-free nanoscaled cationic ammonio methacrylate copolymers (AMCNP) may have a beneficial therapeutic effect in murine TNBS-induced colitis. Type A and B AMCNP (RLNP and RSNP, respectively) were prepared and characterized in vitro, and were rectally administered in two concentrations (5 and 25 mg ml-1) for the treatment of two grades of murine experimental colitis. The impact of the nanoparticles upon the inflammatory markers, circulating LPS, intestinal permeability and colonic leukocyte populations was examined. Both RLNP and RSNP led to a significant mitigation of mild to moderate experimental colitis, as evident from the substantial reduction of myeloperoxidase (MPO) and alkaline phosphatase (AP) activities (more than two-fold, P < 0.05) and various pro-inflammatory cytokine concentrations (TNF-α, IL-1ß, IL-6, IL-12). The best therapeutic efficiency was observed when the particles were used at 5 mg ml-1, while the more cationic RLNP performed superior. When used against a severe grade of colitis, RLNP (5 mg ml-1) resulted in a significant decrease of tissue MPO and TNF-α. It was found that treatment with AMCNP resulted in significant intestinal immune cell depletion, intestinal barrier function improvement, and 1.5-2.5 times reduction of the systemic endotoxin concentration. These findings highlighted the fact that nanoscaling endows the cationic amphiphilic AMCs unique therapeutic properties, which help mitigate murine experimental colitis in the absence of any drug load. The results also provided a glimpse of possible underlying mechanisms through which nanoscaled AMCs might have exerted their therapeutic effect within this context.


Asunto(s)
Resinas Acrílicas/química , Resinas Acrílicas/uso terapéutico , Colitis/tratamiento farmacológico , Nanosferas/química , Nanosferas/uso terapéutico , Resinas Acrílicas/administración & dosificación , Resinas Acrílicas/farmacocinética , Administración Rectal , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colon/efectos de los fármacos , Colon/inmunología , Colon/metabolismo , Mucosa Intestinal/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Lipopolisacáridos/sangre , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Nanosferas/administración & dosificación , Permeabilidad
16.
Mater Sci Eng C Mater Biol Appl ; 109: 110517, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228977

RESUMEN

A novel nanocarrier based-on hollow mesoporous carbon nanospheres (HMCNs) with primary amines on its surface, a large cavity, and good hydrophilicity was synthesized by a hydrothermal reaction. The primary amine functionalities on the mesoporous carbon were used as the initiation sites for growing poly (epichlorohydrin) (PCH) chains. The chlorine groups in the side chain of PCH were replaced with imidazole as the pendant groups. Calcium chloride (CaCl2) was applied as a capping agent. The coordination bonding was formed between pendant imidazole groups and calcium ions. Doxorubicin (DOX) was selected as a model of hydrophilic anticancer drug and was loaded onto the nanocarrier and released through the cleavage of the pH-sensitive coordination bonding. The gating mechanism enables the nanocarrier to store and release the calcium ions and the DOX molecules trapped in the pores. MTT assay toward HeLa cells indicated that the nanocarrier had low toxicity because of the surface modification with the oxygen-rich polymer. The cellular uptake of the pH-sensitive nanocarrier for HeLa cancer cell lines was confirmed by CLSM images and flow cytometry. So, the novel pH-sensitive nanocarrier can be applicable to carry and release both DOX drug and calcium ions for cancer treatment.


Asunto(s)
Calcio , Carbono , Doxorrubicina , Portadores de Fármacos , Nanosferas , Neoplasias/tratamiento farmacológico , Calcio/química , Calcio/farmacología , Carbono/química , Carbono/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Nanosferas/química , Nanosferas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/patología , Porosidad
17.
Nanoscale ; 12(13): 7051-7062, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32186564

RESUMEN

Immunosuppressive chemoresistance is a major barrier in lung cancer treatment. However, the immunosuppressive mechanisms responsible for lung cancer cell chemoresistance and tumor relapse are still unknown. In this study, we introduce a model of precise immunosuppressive-based nanotherapy by designing and delivering biocompatible MDSC-targeted nanocarriers (NCs) into the lung tumor microenvironment. This is accomplished by conjugating l-Norvaline and Sunitinib integrated into biodegradable nanosomes in order to facilitate inhibition of tumor-supporting immunosuppression. Findings show that treatment with NCs increased apoptosis and significantly reduced tumor volume and Ki-67 antigen expression respectively. Biodistribution analysis revealed an increase in drug circulation time, as well as a greater accumulation in lung and peripheral tissues. Furthermore, an upregulation of tumor infiltrating lymphocytes expression was observed, especially CD8+ T cells by 27%, and CD4+ T cells by 7% compared to PBS treatment. The presence of CD161+ (NK1.1) cells revealed NK cell activation followed by decreased MDSC infiltration and MDSC subsets were characterized by the reduction of Gr/CD11b cell population in blood and tissue samples. In addition, these nanospheres, showed increased PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) exposure. Significant tumor reduction was observed due to recruitment of cytotoxic T-lymphocytes, followed by downregulation of immunosuppressive Foxp3+ Treg cells. Taken together, our findings provide a novel nanodrug delivery strategy for the inhibition of MDSC-related immunosuppression in lung tumor microenvironment and provide a new approach for the efficient treatment of metastatic cancer.


Asunto(s)
Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Linfocitos Infiltrantes de Tumor/inmunología , Células Supresoras de Origen Mieloide/inmunología , Nanosferas , Terapia Fototérmica , Microambiente Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/patología , Células Supresoras de Origen Mieloide/patología , Nanosferas/química , Nanosferas/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
18.
Cells ; 9(3)2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151068

RESUMEN

Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as a herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we have investigated the functional role of a nanosphere loaded with curcumin (CN) during host cell death elicited by the Gram-negative bacterium V. vulnificus in human gastrointestinal epithelial HT-29 cells and an ileal-ligated mouse model. The recombinant protein (r) VvhA produced by V. vulnificus significantly reduced the viability of HT-29 cells. The cytotoxic effect of rVvhA was restored upon a treatment with CN (100 ng/mL), which had shown 1000-fold higher anti-apoptotic efficacy than curcumin. CN inhibited the phosphorylation of c-Src and PKC mediated by intracellular ROS responsible for the distinctive activation of the MAPKs in rVvhA-treated HT-29 cells. Interestingly, CN significantly restored the expression of Bax, Bcl-2, and cleaved caspase-3 as regulated by the phosphorylation of NF-κB. In mouse models of V. vulnificus infection, treatment with CN had a blocking effect that elevated the levels of TUNEL-positive DNA fragmentation and apoptosis-related proteins. These results indicate that CN is a functional agent that manipulates the V. vulnificus VvhA signaling pathway responsible for gastrointestinal cell death.


Asunto(s)
Muerte Celular/efectos de los fármacos , Curcumina/farmacología , Nanosferas/uso terapéutico , Vibrio vulnificus/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/genética , Curcumina/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , FN-kappa B/metabolismo , Proteínas Recombinantes/metabolismo , Vibrio vulnificus/genética
19.
Adv Healthc Mater ; 9(3): e1901155, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31867893

RESUMEN

Timely diagnosis of acute myocardial infarction (AMI) strongly impacts the survival rate of patients. The authors report the development of a two-shell hollow silica contrast agent useful for ultrasound (US) imaging, which is able to provide ultra-early diagnosis of AMI. To target the characterization of fast blood flow and high blood pressure in the heart, two shells of hollow silica are adopted with opposite polarities, which assemble based on amino and perfluorodecyl silanes. The external amino silane facilitates the attachment of disease-targeted groups, while the internal perfluorodecyl silane provides great US imaging contrast. The material also possesses superior water dispersity, controllable morphology, low toxicity, and biodegradability both in vitro and in vivo, thus promoting its applications in the ultra-early diagnosis of AMI in rats, and is particularly useful for delineation of myocardial necrosis sites.


Asunto(s)
Medios de Contraste/química , Infarto del Miocardio/diagnóstico por imagen , Nanosferas/química , Ultrasonografía/métodos , Animales , Carbocianinas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/síntesis química , Diagnóstico Precoz , Femenino , Fluoresceína-5-Isotiocianato/química , Hemólisis/efectos de los fármacos , Masculino , Ratones , Microscopía Electrónica de Transmisión , Nanosferas/uso terapéutico , Ratas Sprague-Dawley , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Ultrasonografía/instrumentación
20.
ACS Appl Mater Interfaces ; 11(41): 37461-37470, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31577423

RESUMEN

An important objective of cancer nanomedicine is to improve the delivery efficacy of functional agents to solid tumors for effective cancer imaging and therapy. Stimulus-responsive nanoplatforms can target and regulate the tumor microenvironment (TME) for the optimization of cancer theranostics. Here, we developed magnetic manganese oxide sweetgum-ball nanospheres (MMOSs) with large mesopores as tools for improved cancer theranostics. MMOSs contain magnetic iron oxide nanoparticles and mesoporous manganese oxide (MnO2) nanosheets, which are assembled into gumball-like structures on magnetic iron oxides. The large mesopores of MMOSs are suited for cargo loading with chlorin e6 (Ce6) and doxorubicin (DOX), thus producing so-called CD@MMOSs. The core of magnetic iron oxides could achieve magnetic targeting of tumors under a magnetic field (0.25 mT), and the targeted CD@MMOSs may decompose under TME conditions, thereby releasing loaded cargo molecules and reacting with endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and manganese (II) ions (Mn2+). Investigation in vivo in tumor-bearing mice models showed that the CD@MMOS nanoplatforms achieved TME-responsive cargo release, which might be applied in chemotherapy and photodynamic therapy. A remarkable in vivo synergy of diagnostic and therapeutic functionalities was achieved by the decomposition of CD@MMOSs and coadministration with chemo-photodynamic therapy of tumors using the magnetic targeting mechanism. Thus, the result of this study demonstrates the feasibility of smart nanotheranostics to achieve tumor-specific enhanced combination therapy.


Asunto(s)
Doxorrubicina , Nanopartículas de Magnetita , Compuestos de Manganeso , Nanosferas , Neoplasias Experimentales/tratamiento farmacológico , Óxidos , Porfirinas , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Clorofilidas , Doxorrubicina/química , Doxorrubicina/farmacología , Femenino , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Ratones , Ratones Endogámicos BALB C , Nanomedicina , Nanosferas/química , Nanosferas/uso terapéutico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Óxidos/química , Óxidos/farmacología , Porosidad , Porfirinas/química , Porfirinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...