Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Carbohydr Polym ; 345: 122543, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227090

RESUMEN

Lacto-N-neotetraose (LNnT), as a neutral core structure within human milk oligosaccharides (HMOs), has garnered widespread attention due to its exceptional physiological functions. In the process of LNnT synthesis using cellular factory approaches, substrate promiscuity of glycosyltransferases leads to the production of longer oligosaccharide derivatives. Here, rational modification of ß1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis (LgtA) effectively decreased the concentration of long-chain LNnT derivatives. Specifically, the optimal ß1,4-galactosyltransferase (ß1,4-GalT) was selected from seven known candidates, enabling the efficient synthesis of LNnT in Escherichia coli BL21(DE3). Furthermore, the influence of lactose concentration on the distribution patterns of LNnT and its longer derivatives was investigated. The modification of LgtA was conducted with computational assistance, involving alanine scanning based on molecular docking to identify the substrate binding pocket and implementing large steric hindrance on crucial amino acids to obstruct LNnT entry. The implementation of saturation mutagenesis at positions 223 and 228 of LgtA yielded advantageous mutant variants that did not affect LNnT synthesis while significantly reducing the production of longer oligosaccharide derivatives. The most effective mutant, N223I, reduced the molar ratio of long derivatives by nearly 70 %, showcasing promising prospects for LNnT production with diminished byproducts.


Asunto(s)
N-Acetilglucosaminiltransferasas , Neisseria meningitidis , Oligosacáridos , Neisseria meningitidis/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Oligosacáridos/química , Oligosacáridos/síntesis química , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Especificidad por Sustrato , Lactosa/análogos & derivados , Lactosa/metabolismo , Lactosa/química , Humanos
2.
Appl Microbiol Biotechnol ; 108(1): 446, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167161

RESUMEN

Neuraminic acid synthases are an important yet underexplored group of enzymes. Thus, in this research, we performed a detailed kinetic and stability analysis and a comparison of previously known neuraminic acid synthase from Neisseria meningitidis, and a novel enzyme, PNH5, obtained from a metagenomic library. A systematic analysis revealed a high level of similarity of PNH5 to other known neuraminic acid synthases, except for its pH optimum, which was found to be at 5.5 for the novel enzyme. This is the first reported enzyme from this family that prefers an acidic pH value. The effect of different metal cofactors on enzyme activity, i.e. Co2+, Mn2+ and Mg2+, was studied systematically. The kinetics of neuraminic acid synthesis was completely elucidated, and an appropriate kinetic model was proposed. Enzyme stability study revealed that the purified enzyme exhibits changes in its structure during time as observed by differential light scattering, which cause a drop in its activity and protein concentration. The operational enzyme stability for the neuraminic acid synthase from N. meningitidis is excellent, where no activity drop was observed during the batch reactor experiments. In the case of PNH5, some activity drop was observed at higher concentration of substrates. The obtained results present a solid platform for the future application of these enzymes in the synthesis of sialic acids. KEY POINTS: • A novel neuraminic acid synthase was characterized. • The effect of cofactors on NeuS activity was elucidated. • Kinetic and stability characterization of two neuraminic acid synthases was performed.


Asunto(s)
Estabilidad de Enzimas , Neisseria meningitidis , Cinética , Concentración de Iones de Hidrógeno , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Oxo-Ácido-Liasas/metabolismo , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/química , Coenzimas/metabolismo
3.
Int J Biol Macromol ; 269(Pt 1): 132081, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705330

RESUMEN

3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Neisseria meningitidis , Sialiltransferasas , Escherichia coli/genética , Escherichia coli/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Ingeniería Metabólica/métodos , Neisseria meningitidis/genética , Neisseria meningitidis/enzimología , Mutación , Oligosacáridos/biosíntesis , Fermentación
4.
J Biol Chem ; 299(2): 102789, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509144

RESUMEN

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Asunto(s)
2-Isopropilmalato Sintasa , Biocatálisis , Leucina , Neisseria meningitidis , Dominios Proteicos , 2-Isopropilmalato Sintasa/química , 2-Isopropilmalato Sintasa/genética , 2-Isopropilmalato Sintasa/metabolismo , Regulación Alostérica , Dominio Catalítico , Leucina/biosíntesis , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimología , Neisseria meningitidis/metabolismo , Simulación de Dinámica Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Multimerización de Proteína , Mutagénesis , Docilidad
5.
Angew Chem Int Ed Engl ; 60(51): 26555-26560, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34661966

RESUMEN

Accessing large numbers of structurally diverse glycans and derivatives is essential to functional glycomics. We showed a general tolerance of galactosyltransferases toward uridine-diphosphate-galactosamine (UDP-GalN), which is not a commonly used sugar nucleotide donor. The property was harnessed to develop a two-step chemoenzymatic strategy for facile synthesis of novel and divergent N-acetylgalactosamine (GalNAc)-glycosides and derivatives in preparative scales. The discovery and the application of the new property of existing glycosyltransferases expand their catalytic capabilities in generating novel carbohydrate linkages, thus prompting the synthesis of diverse glycans and glycoconjugates for biological studies.


Asunto(s)
Galactosiltransferasas/metabolismo , Uridina Difosfato N-Acetilgalactosamina/análogos & derivados , Conformación de Carbohidratos , Helicobacter pylori/enzimología , Neisseria meningitidis/enzimología , Uridina Difosfato N-Acetilgalactosamina/biosíntesis , Uridina Difosfato N-Acetilgalactosamina/química
6.
J Mol Biol ; 433(24): 167329, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34710398

RESUMEN

The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/enzimología , Guanina/metabolismo , Neisseria meningitidis/enzimología , Proteínas de Transporte de Nucleobases/química , Xantina/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Simulación de Dinámica Molecular , Mutagénesis , Proteínas de Transporte de Nucleobases/clasificación , Proteínas de Transporte de Nucleobases/genética , Filogenia , Estructura Secundaria de Proteína , Especificidad por Sustrato/genética
7.
Biochemistry ; 60(12): 908-917, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33721990

RESUMEN

We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Sulfatos/farmacología , Amidohidrolasas/metabolismo , Cristalografía por Rayos X , Neisseria meningitidis/enzimología
8.
Virulence ; 12(1): 389-403, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459578

RESUMEN

Neisseria meningitidis (meningococcus) is a common bacterial colonizer of the human nasopharynx but can occasionally cause very severe systemic infections with rapid onset. Meningococci are able to degrade IgA encountered during colonization of mucosal membranes using their IgA1-specific serine protease. During systemic infection, specific IgG can induce complement-mediated lysis of the bacterium. However, meningococcal immune evasion mechanisms in thwarting IgG remain undescribed. In this study, we report for the first time that the meningococcal IgA1-specific serine protease is able to degrade IgG3 in addition to IgA. The IgG3 heavy chain is specifically cleaved in the lower hinge region thereby separating the antigen binding part from its effector binding part. Through molecular characterization, we demonstrate that meningococcal IgA1-specific serine protease of cleavage type 1 degrades both IgG3 and IgA, whereas cleavage type 2 only degrades IgA. Epidemiological analysis of 7581 clinical meningococcal isolates shows a significant higher proportion of cleavage type 1 among isolates from invasive cases compared to carrier cases, regardless of serogroup. Notably, serogroup W cc11 which is an increasing cause of invasive meningococcal disease globally harbors almost exclusively cleavage type 1 protease. Our study also shows an increasing prevalence of meningococcal isolates encoding IgA1P cleavage type 1 compared to cleavage type 2 during the observed decade (2010-2019). Altogether, our work describes a novel mechanism of IgG3 degradation by meningococci and its association to invasive meningococcal disease.


Asunto(s)
Inmunoglobulina G/metabolismo , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Humanos , Inmunoglobulina G/inmunología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/inmunología , Neisseria meningitidis/patogenicidad , Serina/metabolismo , Serina Proteasas/genética , Serina Proteasas/inmunología
9.
Nucleic Acids Res ; 49(5): e29, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33330940

RESUMEN

Optogenetic control of CRISPR-Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.


Asunto(s)
Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , Edición Génica/métodos , Neisseria meningitidis/enzimología , Optogenética/métodos , Línea Celular , Células HEK293 , Humanos , Luz , Modelos Moleculares , Ingeniería de Proteínas , Proteínas/química , Proteínas/efectos de la radiación
10.
J Am Chem Soc ; 142(49): 20519-20523, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33232135

RESUMEN

ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.


Asunto(s)
Proteínas Bacterianas/química , Endopeptidasa Clp/química , Neisseria meningitidis/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Endopeptidasa Clp/metabolismo , Concentración de Iones de Hidrógeno , Conformación Proteica , Termodinámica
11.
Angew Chem Int Ed Engl ; 59(50): 22456-22459, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32857448

RESUMEN

Automated chemical oligosaccharide synthesis is an attractive concept that has been successfully applied to a large number of target structures, but requires excess quantities of suitably protected and activated building blocks. Herein we demonstrate the use of biocatalysis to supply such reagents for automated synthesis. By using the promiscuous NmLgtB-B ß1-4 galactosyltransferase from Neisseria meningitidis we demonstrate fast and robust access to the LacNAc motif, common to many cell-surface glycans, starting from either lactose or sucrose as glycosyl donors. The enzymatic product was shown to be successfully incorporated as a complete unit into a tetrasaccharide target by automated assembly.


Asunto(s)
Automatización , Galactosiltransferasas/metabolismo , Neisseria meningitidis/enzimología , Polisacáridos/biosíntesis , Conformación de Carbohidratos , Polisacáridos/química
12.
FEBS Lett ; 594(18): 3032-3044, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598485

RESUMEN

Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , ADN-Formamidopirimidina Glicosilasa/química , Neisseria meningitidis/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Unión Proteica , Dominios Proteicos
13.
BMC Microbiol ; 20(1): 71, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228482

RESUMEN

BACKGROUND: Neisseria meningitidis (N.meningitidis) bacteria belonging to clonal complex 4821 (CC4821) have been mainly reported in China and have been characterized by a high resistance rate to ciprofloxacin (CIP). The aim of this study was to assess the evolution of the DNA gyrase A (gyrA) gene from N.meningitidis CC4821 strains collected in China between 1978 and 2016. The complete sequence of gyrA gene from 77 strains are reported in this study and analyzed in the context of publicly available sequences from N. meningitidis of other CCs as well as other Neisseria species. RESULTS: The phylogenetic analysis of CC4821 gyrA gene reveals at least 5 distinct genetic clusters. These clusters are not CC4821-specific showing that gyrA evolution is independent of CC4821 evolution. Some clusters contain sequences from other Neisseria species. Recombination within N.meningitidis strains and between Neisseria species was identified in SimPlot analysis. Finally, amino acid substitutions within GyrA protein were analyzed. Only one position, 91 (83 in E.coli gyrA gene), was linked to CIP resistance. Thirty-one additional putative resistance markers were identified, as amino acid substitutions were only found in resistant strains. CONCLUSIONS: The evolution of gyrA gene of CC4821 N.meningitidis strains is not dependent on CC4821 evolution or on CIP resistance phenotype. Only amino acid 91 is linked to CIP resistance phenotype. Finally, recombination inter- and intra-species is likely to result in the acquisition of various resistance markers, 31 of them being putatively mapped in the present study. Analyzing the evolution of gyrA gene within CC4821 strains is critical to monitor the CIP resistance phenotype and the acquisition of new resistance markers. Such studies are necessary for the control of the meningococcal disease and the development of new drugs targeting DNA gyrase.


Asunto(s)
Ciprofloxacina/farmacología , Girasa de ADN/genética , Farmacorresistencia Bacteriana , Neisseria meningitidis/clasificación , Proteínas Bacterianas/genética , China , Evolución Molecular , Humanos , Familia de Multigenes , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Fenotipo , Filogenia , Análisis de Secuencia de ADN
14.
Nat Chem Biol ; 16(7): 725-730, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284602

RESUMEN

Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, to improve its efficacy on different targets. We first show that inserting exogenous protein domains into a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis (Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we converted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our work introduces designer Acrs as important biotechnological tools and provides an innovative strategy to safeguard CRISPR technologies.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , MicroARNs/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Genoma Humano , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , MicroARNs/metabolismo , Modelos Moleculares , Mutagénesis Insercional , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Plásmidos/química , Plásmidos/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
15.
Elife ; 92020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32022687

RESUMEN

Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.


Bacteria are surrounded by a tough yet flexible wall that protects the cell and serves as an anchor for several of the cell's structures. This cell wall contains a large mesh-like molecule called peptidoglycan made of many repeated building blocks. When a bacterial cell divides in two, it needs to make more of this material. Making peptidoglycan involves two different sets of enzymes working together: "polymerases" are the enzymes that link the individual building blocks to peptidoglycan, one after the other; while "lytic transglycosylases" are enzymes that modify the peptidoglycan to create space for the addition of new building blocks and for assemblies of proteins that must span the cell wall. Lytic transglycosylases are known to assemble with other proteins and enzymes to form the cell's peptidoglycan-modifying machinery, but it was not clear exactly what purpose they serve within these "enzyme complexes". It was also unclear whether these enzymes would be good targets for new antibiotics. To help answer these questions, Williams et al. looked at a lytic transglycoslyase called LtgA. This enzyme is originally from Neisseria meningitidis, a bacterium that can cause meningitis and life-threatening sepsis in humans. Williams et al. discovered that part of the enzyme's active site ­ the region of an enzyme where the chemical reaction takes ­ can switch from an ordered helix to a disordered, flexible loop. Bacteria were then genetically engineered to make a version of the enzyme that lacked this helix. These bacteria had weaker cell walls and were deformed; they were also less able to grow and divide, both in the laboratory and in a mouse model of infection. Further analysis showed that the deletion of the helix from the enzyme resulted in the peptidoglycan being modified much more than normal, which could likely explain their reduced virulence. Williams et al. also found that deleting the helix from LtgA interfered with the activity of a protein that interacts with this enzyme, called Ape1, which also contributed to the fragility of the cell wall. This shows that lytic transglycosylases assembled into enzyme complexes can alter the activities of other proteins in the complex. Together these findings show that researchers could target one enzyme in a complex in bacteria, and disrupt the activity of other proteins in that complex. This highlights the possibility of considering enzyme complexes as useful targets for new drugs, which is important considering the current problem of antibiotic resistance.


Asunto(s)
Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Neisseria meningitidis/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Pared Celular/enzimología , Glicosiltransferasas/química , Morfogénesis , Neisseria meningitidis/enzimología , Peptidoglicano/metabolismo , Unión Proteica
16.
Elife ; 92020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31916936

RESUMEN

The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here, we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.


Asunto(s)
Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Neisseria meningitidis/enzimología , Desplegamiento Proteico , Proteolisis , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Proteínas Fluorescentes Verdes/metabolismo , Hidrólisis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
17.
Biochemistry ; 59(34): 3157-3168, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31583886

RESUMEN

Cytidine 5'-monophosphate (CMP)-sialic acid synthetase (CSS) is an essential enzyme involved in the biosynthesis of carbohydrates and glycoconjugates containing sialic acids, a class of α-keto acids that are generally terminal key recognition residues by many proteins that play important biological and pathological roles. The CSS from Neisseria meningitidis (NmCSS) has been commonly used with other enzymes such as sialic acid aldolase and/or sialyltransferase in synthesizing a diverse array of compounds containing sialic acid or its naturally occurring and non-natural derivatives. To better understand its catalytic mechanism and substrate promiscuity, four NmCSS crystal structures trapped at various stages of the catalytic cycle with bound substrates, substrate analogues, and products have been obtained and are presented here. These structures suggest a mechanism for an "open" and "closed" conformational transition that occurs as sialic acid binds to the NmCSS/cytidine-5'-triphosphate (CTP) complex. The closed conformation positions critical residues to help facilitate the nucleophilic attack of sialic acid C2-OH to the α-phosphate of CTP, which is also aided by two observed divalent cations. Product formation drives the active site opening, promoting the release of products.


Asunto(s)
Biocatálisis , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Mutación , N-Acilneuraminato Citidililtransferasa/genética
18.
Methods ; 172: 32-41, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228550

RESUMEN

The majority of bacteria and archaea rely on CRISPR-Cas systems for RNA-guided, adaptive immunity against mobile genetic elements. The Cas9 family of type II CRISPR-associated DNA endonucleases generates programmable double strand breaks in the CRISPR-complementary DNA targets flanked by the PAM motif. Nowadays, CRISPR-Cas9 provides a set of powerful tools for precise genome manipulation in eukaryotes and prokaryotes. Recently, a few Cas9 orthologs have been reported to possess intrinsic CRISPR-guided, sequence-specific ribonuclease activities. These discoveries fundamentally expanded the targeting capability of CRISPR-Cas9 systems, and promise to provide new CRISPR tools to manipulate specific cellular RNA transcripts. Here we present a detailed method for the biochemical characterization of Cas9's RNA-targeting potential.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Pruebas de Enzimas/métodos , ARN Guía de Kinetoplastida/metabolismo , Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Pruebas de Enzimas/instrumentación , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Neisseria meningitidis/virología , ARN Guía de Kinetoplastida/genética , Proteínas Virales/metabolismo
19.
Mol Cell ; 76(6): 938-952.e5, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31668930

RESUMEN

High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.


Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Neisseria meningitidis/enzimología , Proteínas Virales/metabolismo , Bacteriófagos/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , Catálisis , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Neisseria meningitidis/genética , Unión Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructura
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1438-1448, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31325637

RESUMEN

In Neisseria sp., SGNH family esterases are involved in bacterial pathogenesis as well as cell wall peptidoglycan maturation. Here, a novel enantioselective SGNH family esterase (NmSGNH1) from Neisseria meningitidis, which has sequence similarity to carbohydrate esterase (CE3) family, was catalytically characterized and functionally explored. NmSGNH1 exhibited a wide range of substrate specificities including naproxol acetate, tert-butyl acetate, glucose pentaacetate as well as p-nitrophenyl esters. Deletion of C-terminal residues (NmSGNH1Δ11) led to the altered substrate specificity, reduced catalytic activity, and increased thermostability. Furthermore, a hydrophobic residue of Leu92 in the substrate-binding pocket was identified to be critical in catalytic activity, thermostability, kinetics, and enantioselectivity. Interestingly, immobilization of NmSGNH1 by hybrid nanoflowers (hNFs) and crosslinked enzyme aggregates (CLEAs) showed increased level of activity, recycling property, and enhanced stability. Finally, synthesis of butyl acetate, oleic acid esters, and fatty acid methyl esters (FAMEs) were verified. In summary, this work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a novel SGNH family esterase from Neisseria meningitidis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Neisseria meningitidis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Esterasas/química , Esterasas/genética , Ésteres/metabolismo , Humanos , Meningitis Meningocócica/microbiología , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/genética , Mutación Puntual , Alineación de Secuencia , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA