Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068956

RESUMEN

The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.


Asunto(s)
Diabetes Mellitus Experimental , Hipertensión , Ratas , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Nefronas/metabolismo , Esfingolípidos
2.
PLoS One ; 18(4): e0284816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093844

RESUMEN

Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.


Asunto(s)
Proteínas de Ciclo Celular , Nefronas , Ratas , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Nefronas/metabolismo , Células Madre/metabolismo , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/metabolismo
3.
Kidney Int ; 102(6): 1247-1258, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228680

RESUMEN

The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.


Asunto(s)
Aldosterona , Hipertensión , Animales , Humanos , Presión Sanguínea , Aldosterona/metabolismo , Nefronas/metabolismo , Sodio/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298880

RESUMEN

BACKGROUND: The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.


Asunto(s)
Cadmio/metabolismo , Endocitosis/fisiología , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metalotioneína/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Nefronas/metabolismo
5.
PLoS One ; 16(2): e0246289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33544723

RESUMEN

BACKGROUND: Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and renal failure development compared to regular protein (NP) intake rats in adulthood. We evaluated the expression of various miRNAs and predicted target genes in the kidney in gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved in the proliferation and differentiation of renal embryonic or fetal cells. METHODS: Pregnant Wistar rats were classified into two groups based on protein supply during pregnancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohistochemistry, and morphological analysis of 17-DG NP and LP offspring were performed using previously described methods. RESULTS: A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in proliferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-matched NP fetuses. Conversely, in LP CM and UB, ß-catenin was 154%, and 85% increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%) and UB (104%) compared to that in NP offspring. TGFß-1 positive cells in the UB increased by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the entire metanephros, was similar in both experimental groups. CONCLUSIONS: Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins involved in proliferation, differentiation, and apoptosis during renal development. Renal ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal interaction between CM and UB; consequently, a programmed and expressive decrease in nephron number occurs in the fetus.


Asunto(s)
Dieta con Restricción de Proteínas/efectos adversos , Riñón/embriología , Fenómenos Fisiologicos Nutricionales Maternos , MicroARNs/metabolismo , Nefronas/embriología , Células Madre/metabolismo , Animales , Femenino , Riñón/metabolismo , Masculino , Nefronas/metabolismo , Embarazo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Hypertension ; 77(3): 759-767, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486988

RESUMEN

The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Canales Epiteliales de Sodio/metabolismo , Hipertensión/fisiopatología , Cloruro de Sodio Dietético/metabolismo , Animales , Humanos , Hipertensión/etiología , Hipertensión/metabolismo , Transporte Iónico , Riñón/metabolismo , Modelos Biológicos , Nefronas/metabolismo , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/efectos adversos
7.
Am J Physiol Renal Physiol ; 320(3): F378-F403, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491560

RESUMEN

With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


Asunto(s)
Nefronas/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Droga/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Animales , Humanos , Túbulos Renales Distales/metabolismo , Seudohipoaldosteronismo/metabolismo
8.
J Mol Histol ; 51(6): 701-716, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33070272

RESUMEN

The kidney controls body fluids, electrolyte and acid-base balance. Previously, we demonstrated that hyperpolarization-activated and cyclic nucleotide-gated (HCN) cation channels participate in ammonium excretion in the rat kidney. Since acid-base balance is closely linked to potassium metabolism, in the present work we aim to determine the effect of chronic metabolic acidosis (CMA) and hyperkalemia (HK) on protein abundance and localization of HCN3 in the rat kidney. CMA increased HCN3 protein level only in the outer medulla (2.74 ± 0.31) according to immunoblot analysis. However, immunofluorescence assays showed that HCN3 augmented in cortical proximal tubules (1.45 ± 0.11) and medullary thick ascending limb of Henle's loop (4.48 ± 0.45) from the inner stripe of outer medulla. HCN3 was detected in brush border membranes (BBM) and mitochondria of the proximal tubule by immunogold electron and confocal microscopy in control conditions. Acidosis did not alter HCN3 levels in BBM and mitochondria but augmented them in lysosomes. HCN3 was also immuno-detected in mitoautophagosomes. In the distal nephron, HCN3 was expressed in principal and intercalated cells from cortical to medullary collecting ducts. CMA did not change HCN3 abundance in these nephron segments. In contrast, HK doubled HCN3 level in cortical collecting ducts and favored its basolateral localization in principal cells from the inner medullary collecting ducts. These findings further support HCN channels contribution to renal acid-base and potassium balance.


Asunto(s)
Acidosis/etiología , Acidosis/metabolismo , Hiperpotasemia/etiología , Hiperpotasemia/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Nefronas/metabolismo , Canales de Potasio/metabolismo , Animales , Biomarcadores , Enfermedad Crónica , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Túbulos Renales Proximales/metabolismo , Asa de la Nefrona/metabolismo , Nefronas/ultraestructura , Canales de Potasio/genética , Ratas
9.
Physiol Rep ; 4(4)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26884476

RESUMEN

Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P < 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/µg protein; P < 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/µg protein (P < 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/µg protein; n = 5). In the presence of Ang II plus the PKC α/ß1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/µg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/µg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate.


Asunto(s)
Angiotensina II/metabolismo , Asa de la Nefrona/metabolismo , Nefronas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Superóxidos/metabolismo , Animales , Mediciones Luminiscentes , Masculino , Microscopía Fluorescente , NADPH Oxidasas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
10.
J Mol Histol ; 45(5): 583-97, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24948003

RESUMEN

Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.


Asunto(s)
Perfilación de la Expresión Génica , Familia de Multigenes , Nefronas/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Animales , Células Endoteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Corteza Renal/metabolismo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Masculino , Microscopía Confocal , Podocitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio de la Superfamilia Shaker/metabolismo
11.
PLoS One ; 8(6): e68049, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840808

RESUMEN

AIMS: Glutathione (GSH) plays an important role in protecting cells against oxidative damage. ABCC1 protein transports GSH. Although this protein is largely studied in cancer, due to multidrug resistance phenotype, its role in the tubular cells of the kidney is unknown. The goal of this study was to find out whether ABCC1 has a role in protecting cells from the distal nephron against the stress caused by high medullar osmolality. MAIN METHODS: MA104 cells were treated with high concentrations of sodium chloride, urea, or both to raise the osmolality of the culture medium. Cell viability was accessed by MTT and trypan blue assays. ABCC1 expression and extrusion of carboxi-fluorescein (CF), a fluorescent ABCC1 substrate, were measured by flow cytometry. KEY FINDINGS: Incubation of MA104 cells in a high sodium concentration medium resulted in changes in cell granularity and altered expression and activity of ABCC1. Urea did not alter ABCC1 expression or activity, but reversed the observed NaCl effects. High sodium concentrations also had a negative effect on cell viability and urea also protected cells against this effect. SIGNIFICANCE: Our findings demonstrate that ABCC1 plays a significant role in the protection of kidney epithelial cells against the stress caused by high sodium environment present in renal medulla.


Asunto(s)
Médula Renal/metabolismo , Médula Renal/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neoplasias/fisiopatología , Nefronas/metabolismo , Nefronas/fisiología , Cloruro de Sodio/metabolismo , Animales , Transporte Biológico/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Perros , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Glutatión/metabolismo , Haplorrinos , Células de Riñón Canino Madin Darby , Neoplasias/metabolismo , Concentración Osmolar , Porcinos
12.
Am J Physiol Renal Physiol ; 303(3): F449-57, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22622465

RESUMEN

Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 µg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (µm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Riñón/enzimología , Subtipo EP3 de Receptores de Prostaglandina E/fisiología , Animales , Western Blotting , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/análogos & derivados , Dinoprostona/farmacología , Dinoprostona/fisiología , Retroalimentación Fisiológica/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Inmunohistoquímica , Riñón/efectos de los fármacos , Riñón/metabolismo , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Nefronas/metabolismo , ARN/biosíntesis , ARN/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/efectos de los fármacos
13.
Med Princ Pract ; 21(2): 101-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22042004

RESUMEN

The understanding of the independent regulation of sodium and potassium by the kidney has remained elusive. Recent evidence now points to dissimilar regulatory mechanisms in ion handling, dependent on the presence of either aldosterone alone or angiotensin II with aldosterone among other factors. This review summarizes past and present information in an attempt to reconcile the current concepts of differential regulation of sodium and potassium balance through the with-no-lysine (K) kinase (WNK) system and the previous knowledge regarding ion transport mechanisms in the distal nephron.


Asunto(s)
Riñón/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Canales Epiteliales de Sodio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Iónico , Antígenos de Histocompatibilidad Menor , Nefronas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio en la Dieta/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1
14.
Adv Physiol Educ ; 35(2): 114-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21652492

RESUMEN

Most of the transport along the nephron uses membrane proteins and exhibits the three characteristics of mediated transport: saturation, specificity, and competition. Glucose reabsorption in the nephron is an excellent example of the consequences of saturation. Two classic papers by James A. Shannon and colleagues clearly show the ability of the kidney in transporting glucose and its saturation process, providing students with examples of the handling of glucose by the kidney. In addition, these articles demonstrate how stable and reproducible is the transport maximum of glucose in the proximal tubule under different experimental conditions. One key figure from each classic paper can be used to give students insight into how glucose transport becomes saturated, resulting in the excretion of glucose in urine, and will also give students a clear example of how careful experimentation and a clear interest in renal physiology led Shannon and colleagues to advance the field.


Asunto(s)
Glucosa/metabolismo , Túbulos Renales/metabolismo , Riñón/fisiología , Aprendizaje , Fisiología/educación , Enseñanza/métodos , Absorción , Transporte Biológico , Tasa de Filtración Glomerular , Humanos , Nefronas/metabolismo , Estudiantes
15.
J Nephrol ; 23 Suppl 16: S19-27, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21170879

RESUMEN

The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na+ uptake by distal tubules is dependent on Na+/H+ exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H+-ATPase and a Cl/HCO3- exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H+-ATPase in series with a basolateral Cl/HCO3- exchanger, the anion exchanger AE1. Type B IC cells mediate HCO3- secretion through the apical Cl-/HCO3- exchanger pendrin in series with a H+-ATPase at the basolateral membrane. Alternatively, H+/K+-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Túbulos Renales Distales/metabolismo , Nefronas/metabolismo , Animales , Antiportadores de Cloruro-Bicarbonato/fisiología , ATPasa Intercambiadora de Hidrógeno-Potásio/fisiología , Humanos , Transporte Iónico , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/fisiología , ATPasas de Translocación de Protón Vacuolares/fisiología
17.
Cell Physiol Biochem ; 20(6): 919-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17982274

RESUMEN

The present work proposes an extra neural site of catecholamine production along the nephron. LLC-PK(1), MDCK, and mIMCD-3 (proximal and distal tubules and inner medullary collecting duct, respectively) presented the following amine concentrations in the cell homogenates: Norepinephrine = 275+/-34, 56+/-16 and 255+/-21; Epinephrine = 161+/-20, 83+/-17 and 53+/-7; and Dopamine = 63+/-15, 39+/-6 and 36+/-7 pg/mg cell protein (Means +/- SEM), respectively. The culture medium showed Norepinephrine = 168+/-25, 22+/-3 and 135+/-8; Epinephrine = 32+/-6, 152+/-17 and 39+/-5; and Dopamine = 27+/-9, 241+/-34 and 26+/-5 pg/mg cell protein, respectively. The synthesis enzymes as tyrosine hydroxylase, dopa decarboxylase and dopamine beta-hydroxylase were detected by Western blotting. Biopterin, the enzymatic cofactor of tyrosine hydroxylase, was quantified in the intracellular and medium of mIMCD-3 cells (17+/-4 and 24+/-3 nmol/mg cell protein, respectively) and in the medium of MDCK cells (19+/-4 nmol/mg cell protein). The data confirmed that the proximal tubule is an important source of dopa decarboxilase and Dopamine and epithelial cell along the nephron express the biochemical pathway for catecholamine production.


Asunto(s)
Catecolaminas/biosíntesis , Nefronas/metabolismo , Animales , Biopterinas/metabolismo , Compartimento Celular , Células Cultivadas , Medios de Cultivo , Perros , Dopa-Decarboxilasa/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Nefronas/citología , Nefronas/enzimología , Porcinos , Tirosina 3-Monooxigenasa/metabolismo
18.
Braz J Med Biol Res ; 38(7): 1043-51, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16007275

RESUMEN

The objective of the present study was to determine if treatment of diabetic rats with D-alpha-tocopherol could prevent the changes in glomerular and tubular function commonly observed in this disease. Sixty male Wistar rats divided into four groups were studied: control (C), control treated with D-alpha-tocopherol (C + T), diabetic (D), and diabetic treated with D-alpha-tocopherol (D + T). Treatment with D-alpha-tocopherol (40 mg/kg every other day, ip) was started three days after diabetes induction with streptozotocin (60 mg/kg, ip). Renal function studies and microperfusion measurements were performed 30 days after diabetes induction and the kidneys were removed for morphometric analyses. Data are reported as means +/- SEM. Glomerular filtration rate increased in D rats but decreased in D + T rats (C: 6.43 +/- 0.21; D: 7.74 +/- 0.45; D + T: 3.86 +/- 0.18 ml min-1 kg-1). Alterations of tubular acidification observed in bicarbonate absorption flux (JHCO3) and in acidification half-time (t/2) in group D were reversed in group D + T (JHCO3, C: 2.30 +/- 0.10; D: 3.28 +/- 0.22; D + T: 1.87 +/- 0.08 nmol cm-2 s-1; t/2, C: 4.75 +/- 0.20; D: 3.52 +/- 0.15; D + T: 5.92 +/- 0.19 s). Glomerular area was significantly increased in D, while D + T rats exhibited values similar to C, suggesting that the vitamin prevented the hypertrophic effect of hyperglycemia (C: 8334.21 +/- 112.05; D: 10,217.55 +/- 100.66; D + T: 8478.21 +/- 119.81 microm(2)). These results suggest that D-alpha-tocopherol is able to protect rats, at least in part, from the harmful effects of diabetes on renal function.


Asunto(s)
Acidosis Tubular Renal/prevención & control , Antioxidantes/farmacología , Diabetes Mellitus Experimental/orina , Nefropatías Diabéticas/prevención & control , Nefronas/efectos de los fármacos , alfa-Tocoferol/farmacología , Animales , Tasa de Filtración Glomerular , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Nefronas/metabolismo , Ratas , Ratas Wistar
19.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;38(7)July 2005. tab, graf
Artículo en Inglés | LILACS | ID: lil-403859

RESUMEN

The objective of the present study was to determine if treatment of diabetic rats with D-alpha-tocopherol could prevent the changes in glomerular and tubular function commonly observed in this disease. Sixty male Wistar rats divided into four groups were studied: control (C), control treated with D-alpha-tocopherol (C + T), diabetic (D), and diabetic treated with D-alpha-tocopherol (D + T). Treatment with D-alpha-tocopherol (40 mg/kg every other day, ip) was started three days after diabetes induction with streptozotocin (60 mg/kg, ip). Renal function studies and microperfusion measurements were performed 30 days after diabetes induction and the kidneys were removed for morphometric analyses. Data are reported as means ± SEM. Glomerular filtration rate increased in D rats but decreased in D + T rats (C: 6.43 ± 0.21; D: 7.74 ± 0.45; D + T: 3.86 ± 0.18 ml min-1 kg-1). Alterations of tubular acidification observed in bicarbonate absorption flux (JHCO3) and in acidification half-time (t/2) in group D were reversed in group D + T (JHCO3, C: 2.30 ± 0.10; D: 3.28 ± 0.22; D + T: 1.87 ± 0.08 nmol cm-2 s-1; t/2, C: 4.75 ± 0.20; D: 3.52 ± 0.15; D + T: 5.92 ± 0.19 s). Glomerular area was significantly increased in D, while D + T rats exhibited values similar to C, suggesting that the vitamin prevented the hypertrophic effect of hyperglycemia (C: 8334.21 ± 112.05; D: 10,217.55 ± 100.66; D + T: 8478.21 ± 119.81æm²). These results suggest that D-alpha-tocopherol is able to protect rats, at least in part, from the harmful effects of diabetes on renal function.


Asunto(s)
Animales , Masculino , Ratas , Acidosis Tubular Renal/prevención & control , Antioxidantes/farmacología , Diabetes Mellitus Experimental/orina , Nefropatías Diabéticas/prevención & control , Nefronas/efectos de los fármacos , alfa-Tocoferol/farmacología , Tasa de Filtración Glomerular , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Nefronas/metabolismo , Ratas Wistar
20.
Biochim Biophys Acta ; 1665(1-2): 101-10, 2004 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-15471576

RESUMEN

In this work, we studied the mRNA distribution of CNG-A3, an amiloride-sensitive sodium channel that belongs to the cyclic nucleotide-gated (CNG) family of channels, along the rat nephron. The possible involvement of aldosterone in this process was also studied. We also evaluated its expression in rats subjected to diets with different concentrations of sodium or to alterations in aldosterone plasma levels. Total RNA isolated from whole kidney and/or dissected nephron segments of Wistar rats subjected to low- and high-sodium diets, furosemide treatment, adrenalectomy, and adrenalectomy with replacement by aldosterone were analyzed by the use of Western blot, ribonuclease protection assay (RPA) and/or reverse transcription followed by semi-quantitative polymerase chain reaction (RT-PCR). CNG-A3 sodium channel mRNA and protein expression, in whole kidneys of rats subjected to high-Na+ diet, were lower than those in animals given a low-salt diet. Renal CNG-A3 mRNA expression was also decreased in adrenalectomized rats, and was normalized by aldosterone replacement. Moreover, a CNG-A3 mRNA expression study in different nephron segments revealed that aldosterone modulation is present in the cortical thick ascending loop (cTAL) and cortical collecting duct (CCD). This result suggests that CNG-A3 is responsive to the same hormone signaling as the amiloride sensitive sodium channel ENaC and suggests the CNG-A3 may have a physiological role in sodium reabsorption.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Canales de Sodio/genética , Cloruro de Sodio Dietético/farmacología , Aldosterona/sangre , Aldosterona/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Dieta Hiposódica , Canales Iónicos/análisis , Canales Iónicos/genética , Canales Iónicos/metabolismo , Riñón , Nefronas/química , Nefronas/metabolismo , ARN Mensajero/análisis , Ratas , Ratas Wistar , Canales de Sodio/análisis , Cloruro de Sodio Dietético/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA