Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.261
1.
Commun Biol ; 7(1): 571, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750282

Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.


Neurons , Software , Neurons/physiology , Humans , Animals , Algorithms , Nerve Net/physiology , Nerve Net/cytology , Image Processing, Computer-Assisted/methods , Models, Neurological
2.
Phys Rev E ; 109(4-1): 044404, 2024 Apr.
Article En | MEDLINE | ID: mdl-38755896

Statistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however, can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons are weakly coupled. This phenomenon occurs across different network structures, including random networks and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and ground-truth connections in partially observed networks.


Action Potentials , Models, Neurological , Nerve Net , Neurons , Neurons/physiology , Nerve Net/physiology , Nerve Net/cytology , Synapses/physiology , Stochastic Processes
3.
Nature ; 629(8010): 146-153, 2024 May.
Article En | MEDLINE | ID: mdl-38632406

Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.


Astrocytes , Cerebral Cortex , Glutamic Acid , Nerve Net , Neurotransmitter Agents , gamma-Aminobutyric Acid , Animals , Female , Male , Mice , Astrocytes/metabolism , Astrocytes/cytology , Calcium/metabolism , Calcium Signaling , Cell Communication , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Time Factors
6.
Nat Hum Behav ; 7(6): 942-955, 2023 Jun.
Article En | MEDLINE | ID: mdl-36928781

Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.


Cerebral Cortex , Functional Laterality , Female , Humans , Infant, Newborn , Male , Young Adult , Auditory Pathways , Birth Weight , Cerebral Cortex/anatomy & histology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Cohort Studies , Connectome , Functional Laterality/physiology , Gestational Age , Health , Infant, Premature , Magnetic Resonance Imaging , Nerve Net/anatomy & histology , Nerve Net/cytology , Nerve Net/physiology , Visual Pathways
7.
Nature ; 613(7944): 543-549, 2023 01.
Article En | MEDLINE | ID: mdl-36418404

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Cerebellar Cortex , Nerve Net , Neural Pathways , Neurons , Animals , Mice , Cerebellar Cortex/cytology , Cerebellar Cortex/physiology , Cerebellar Cortex/ultrastructure , Neural Networks, Computer , Neurons/cytology , Neurons/physiology , Neurons/ultrastructure , Nerve Net/cytology , Nerve Net/physiology , Nerve Net/ultrastructure , Microscopy, Electron, Transmission
8.
PLoS Comput Biol ; 18(2): e1008836, 2022 02.
Article En | MEDLINE | ID: mdl-35139071

Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous irregular activity but, in standard balanced E-I models, this requires that an extremely strong feedforward bias current be included along with the recurrent excitation and inhibition. The absence of experimental evidence for such large bias currents inspired us to examine an alternative regime that exhibits asynchronous activity without requiring unrealistically large feedforward input. In these networks, irregular spontaneous activity is supported by a continually changing sparse set of neurons. To support this activity, synaptic strengths must be drawn from high-variance distributions. Unlike standard balanced networks, these sparse balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis to illustrate the properties of these networks.


Cerebral Cortex , Models, Neurological , Nerve Net , Neurons , Synaptic Potentials/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computational Biology , Nerve Net/cytology , Nerve Net/physiology , Neurons/cytology , Neurons/physiology
9.
Elife ; 112022 01 20.
Article En | MEDLINE | ID: mdl-35049496

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.


Action Potentials/physiology , Models, Neurological , Motor Cortex , Nerve Net , Neurons , Animals , Electrophysiology , Female , Macaca mulatta , Male , Motor Cortex/cytology , Motor Cortex/physiology , Nerve Net/cytology , Nerve Net/physiology , Neurons/cytology , Neurons/physiology
10.
J Pharmacol Sci ; 148(2): 267-278, 2022 Feb.
Article En | MEDLINE | ID: mdl-35063143

Construction of in vitro functional assay systems using human-induced pluripotent stem cells (iPSCs) as indicators for evaluating seizure liability of compounds has been anticipated. Imbalance of excitation/inhibition (E/I) inputs triggers seizure; however, the appropriate ratio of E/I neurons for evaluating seizure liability of compounds in a human iPSC-derived neural network is unknown. Here, five neural networks with varying E/I ratios (88/12, 84/16, 74/26, 58/42, and 48/52) were constructed by altering the ratios of glutamatergic (E) and GABA (I) neurons. The responsiveness of each network against six seizurogenic compounds and two GABA receptor agonists was then examined by using six representative parameters. The 52% GABA neuron network, which had the highest ratio of GABA neurons, showed the most marked response to seizurogenic compounds, however, it suggested the possibility of producing false positives. Moreover, analytical parameters were found to vary with E/I ratio and to differ for seizurogenic compounds with different mechanism of action (MoA) even at the same E/I ratio. Clustering analysis using six parameters showed the balance of 84/16, which is the closest to the biological balance, was the most suitable for detection of concentration-dependent change and classification of the MoA of seizurogenic compounds. These results suggest the importance of using a human-iPSC-derived neural network similar to the E/I balance of the living body in order to improve the prediction accuracy in the in vitro seizure liability assessment.


Cerebral Cortex/physiology , Electrophysiological Phenomena/drug effects , Induced Pluripotent Stem Cells/physiology , Nerve Net/physiology , Seizures/chemically induced , Cells, Cultured , Cerebral Cortex/cytology , GABA Agonists/pharmacology , GABAergic Neurons , Humans , Nerve Net/cytology
11.
Nat Protoc ; 17(1): 15-35, 2022 01.
Article En | MEDLINE | ID: mdl-34992269

The development of neural circuits involves wiring of neurons locally following their generation and migration, as well as establishing long-distance connections between brain regions. Studying these developmental processes in the human nervous system remains difficult because of limited access to tissue that can be maintained as functional over time in vitro. We have previously developed a method to convert human pluripotent stem cells into brain region-specific organoids that can be fused and integrated to form assembloids and study neuronal migration. In contrast to approaches that mix cell lineages in 2D cultures or engineer microchips, assembloids leverage self-organization to enable complex cell-cell interactions, circuit formation and maturation in long-term cultures. In this protocol, we describe approaches to model long-range neuronal connectivity in human brain assembloids. We present how to generate 3D spheroids resembling specific domains of the nervous system and then how to integrate them physically to allow axonal projections and synaptic assembly. In addition, we describe a series of assays including viral labeling and retrograde tracing, 3D live imaging of axon projection and optogenetics combined with calcium imaging and electrophysiological recordings to probe and manipulate the circuits in assembloids. The assays take 3-4 months to complete and require expertise in stem cell culture, imaging and electrophysiology. We anticipate that these approaches will be useful in deciphering human-specific aspects of neural circuit assembly and in modeling neurodevelopmental disorders with patient-derived cells.


Brain/cytology , Nerve Net , Neurophysiology/methods , Organoids , Cell Culture Techniques/methods , Cells, Cultured , Humans , Molecular Imaging , Nerve Net/cytology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Optogenetics , Organ Culture Techniques/methods , Organoids/cytology , Organoids/diagnostic imaging , Organoids/physiology , Pluripotent Stem Cells/cytology
12.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Article En | MEDLINE | ID: mdl-34857649

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Cerebellum/physiology , Nerve Net/physiology , Proprioception/physiology , Spinal Cord/physiology , Spinocerebellar Tracts/physiology , Animals , Animals, Newborn , Cerebellum/chemistry , Cerebellum/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/chemistry , Nerve Net/cytology , Spinal Cord/chemistry , Spinal Cord/cytology , Spinocerebellar Tracts/chemistry , Spinocerebellar Tracts/cytology
13.
PLoS Comput Biol ; 17(12): e1009691, 2021 12.
Article En | MEDLINE | ID: mdl-34968383

Assemblies of neurons, called concepts cells, encode acquired concepts in human Medial Temporal Lobe. Those concept cells that are shared between two assemblies have been hypothesized to encode associations between concepts. Here we test this hypothesis in a computational model of attractor neural networks. We find that for concepts encoded in sparse neural assemblies there is a minimal fraction cmin of neurons shared between assemblies below which associations cannot be reliably implemented; and a maximal fraction cmax of shared neurons above which single concepts can no longer be retrieved. In the presence of a periodically modulated background signal, such as hippocampal oscillations, recall takes the form of association chains reminiscent of those postulated by theories of free recall of words. Predictions of an iterative overlap-generating model match experimental data on the number of concepts to which a neuron responds.


Memory/physiology , Models, Neurological , Neurons/cytology , Computational Biology , Hippocampus/cytology , Hippocampus/physiology , Humans , Nerve Net/cytology , Nerve Net/physiology , Temporal Lobe/cytology , Temporal Lobe/physiology
14.
STAR Protoc ; 2(4): 100931, 2021 12 17.
Article En | MEDLINE | ID: mdl-34778848

Perineuronal nets (PNNs) are emerging as critical regulators of memory-related neuronal processes. However, their exact contribution depends on type of memory, consolidation stage, or brain region, and remains to be fully investigated. We describe here a protocol to evaluate the importance of PNNs in the dorsal hippocampus in different stages of aversive memories using a mouse model. The protocol provides detailed instructions for surgical implantation of hippocampal cannulas, drug infusion, contextual fear conditioning procedures, and immunohistochemistry for PNN visualization. For complete details on the use and execution of this protocol, please refer to Jovasevic et al. (2021).


Fear/physiology , Hippocampus , Memory/physiology , Nerve Net , Animals , Behavior, Animal/physiology , Conditioning, Classical , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/physiology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/physiology
15.
Sci Rep ; 11(1): 22050, 2021 11 11.
Article En | MEDLINE | ID: mdl-34764308

Gamma-aminobutyric acid (GABA)-releasing interneurons modulate neuronal network activity in the brain by inhibiting other neurons. The alteration or absence of these cells disrupts the balance between excitatory and inhibitory processes, leading to neurological disorders such as epilepsy. In this regard, cell-based therapy may be an alternative therapeutic approach. We generated light-sensitive human embryonic stem cell (hESC)-derived GABAergic interneurons (hdIN) and tested their functionality. After 35 days in vitro (DIV), hdINs showed electrophysiological properties and spontaneous synaptic currents comparable to mature neurons. In co-culture with human cortical neurons and after transplantation (AT) into human brain tissue resected from patients with drug-resistant epilepsy, light-activated channelrhodopsin-2 (ChR2) expressing hdINs induced postsynaptic currents in human neurons, strongly suggesting functional efferent synapse formation. These results provide a proof-of-concept that hESC-derived neurons can integrate and modulate the activity of a human host neuronal network. Therefore, this study supports the possibility of precise temporal control of network excitability by transplantation of light-sensitive interneurons.


GABAergic Neurons/cytology , Human Embryonic Stem Cells/cytology , Nerve Net/cytology , Animals , Cell Line , Cells, Cultured , Coculture Techniques , GABAergic Neurons/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mice , Nerve Net/physiology , Neurogenesis , Synaptic Potentials
16.
Nat Commun ; 12(1): 6639, 2021 11 17.
Article En | MEDLINE | ID: mdl-34789723

Imaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p). Combining optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view of ~25 mm2, encompassing distances up to 7 mm, with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain.


Microscopy, Fluorescence, Multiphoton/methods , Nerve Net/physiology , Optical Imaging/methods , Brain/cytology , Brain/physiology , Calcium/metabolism , Equipment Design , Microscopy, Fluorescence, Multiphoton/instrumentation , Nerve Net/cytology , Neurons/cytology , Neurons/physiology , Optical Imaging/instrumentation
17.
PLoS Comput Biol ; 17(11): e1009478, 2021 11.
Article En | MEDLINE | ID: mdl-34748532

Cortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of bursts, suggesting that these events play a special role in cortical information processing. In vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state increases the amount of information they convey. However, because burst activity relies on a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network models, network states in which bursts occur rarely are therefore typically not robust, but require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory plasticity rule in dendrite-targeting interneurons that is consistent with experimental data. The suggested learning rule can be combined with other forms of inhibitory plasticity to self-organize a network state in which both spikes and bursts occur asynchronously and irregularly at low rate. Finally, we show that this network state creates the network conditions for a recently suggested multiplexed code and thereby indeed increases the amount of information encoded in bursts.


Action Potentials/physiology , Models, Neurological , Nerve Net/physiology , Pyramidal Cells/physiology , Animals , Computational Biology , Computer Simulation , Dendrites/physiology , Homeostasis , Interneurons/physiology , Nerve Net/cytology , Neuronal Plasticity/physiology , Rats
18.
Cell Rep ; 37(6): 109966, 2021 11 09.
Article En | MEDLINE | ID: mdl-34758322

Sensory processing is essential for motor control. Climbing fibers from the inferior olive transmit sensory signals to Purkinje cells, but how the signals are represented in the cerebellar cortex remains elusive. To examine the olivocerebellar organization of the mouse brain, we perform quantitative Ca2+ imaging to measure complex spikes (CSs) evoked by climbing fiber inputs over the entire dorsal surface of the cerebellum simultaneously. The surface is divided into approximately 200 segments, each composed of ∼100 Purkinje cells that fire CSs synchronously. Our in vivo imaging reveals that, although stimulation of four limb muscles individually elicits similar global CS responses across nearly all segments, the timing and location of a stimulus are derived by Bayesian inference from coordinated activation and inactivation of multiple segments on a single trial basis. We propose that the cerebellum performs segment-based, distributed-population coding that represents the conditional probability of sensory events.


Action Potentials , Calcium/metabolism , Cerebellum/physiology , Nerve Net/physiology , Olivary Nucleus/physiology , Purkinje Cells/physiology , Sense Organs/physiology , Animals , Bayes Theorem , Cerebellum/cytology , Female , Male , Mice , Mice, Inbred ICR , Nerve Net/cytology , Olivary Nucleus/cytology , Purkinje Cells/cytology , Sense Organs/cytology
19.
Sci Rep ; 11(1): 21395, 2021 11 01.
Article En | MEDLINE | ID: mdl-34725371

Recent studies have shown that temporal stability of the neuronal activity over time can be estimated by the structure of the spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was performed during the baseline period of a motivational visuomotor task in which monkeys had to apply different amounts of force to receive different amounts of reward. We found that the striatum and the STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates of intrinsic timescales are important in adding further constraints in the development of computational models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.


Basal Ganglia/physiology , Corpus Striatum/physiology , Nerve Net/physiology , Subthalamic Nucleus/physiology , Animals , Basal Ganglia/cytology , Cognition , Corpus Striatum/cytology , Globus Pallidus/cytology , Globus Pallidus/physiology , Macaca mulatta , Male , Nerve Net/cytology , Subthalamic Nucleus/cytology , Time Factors
20.
Neuron ; 109(19): 3135-3148.e7, 2021 10 06.
Article En | MEDLINE | ID: mdl-34619088

The medial entorhinal cortex (MEC)-hippocampal network plays a key role in the processing, storage, and recall of spatial information. However, how the spatial code provided by MEC inputs relates to spatial representations generated by principal cell assemblies within hippocampal subfields remains enigmatic. To investigate this coding relationship, we employed two-photon calcium imaging in mice navigating through dissimilar virtual environments. Imaging large MEC bouton populations revealed spatially tuned activity patterns. MEC inputs drastically changed their preferred spatial field locations between environments, whereas hippocampal cells showed lower levels of place field reconfiguration. Decoding analysis indicated that higher place field reliability and larger context-dependent activity-rate differences allow low numbers of principal cells, particularly in the DG and CA1, to provide information about location and context more accurately and rapidly than MEC inputs. Thus, conversion of dynamic MEC inputs into stable spatial hippocampal maps may enable fast encoding and efficient recall of spatio-contextual information.


Entorhinal Cortex/physiology , Hippocampus/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Calcium Signaling , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Entorhinal Cortex/cytology , Hippocampus/cytology , Male , Mental Recall/physiology , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/physiology , Presynaptic Terminals/physiology , Reproducibility of Results , Space Perception/physiology , Virtual Reality
...