Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Carcinog ; 63(8): 1572-1587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780170

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often leads to a poor prognosis due to metastasis. The investigation of N6-methyladenosine (m6A) methylation, a crucial RNA modification, and its role in ccRCC, particularly through the m6A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), revealed significant insights. We found that IGF2BP2 was notably downregulated in ccRCC, which correlated with tumor aggressiveness and poor prognosis. Thus, IGFBP2 has emerged as an independent prognostic factor of ccRCC. Moreover, a strong positive correlation was observed between the expression of IGF2BP2 and Netrin-4. Netrin-4 was also downregulated in ccRCC, and its lower levels were associated with increased malignancy and poor prognosis. Overexpression of IGF2BP2 and Netrin-4 suppressed the invasion and migration of ccRCC cells, while Netrin-4 knockdown reversed these effects in ccRCC cell lines. RNA immunoprecipitation (RIP)-quantitative polymerase chain reaction validated the robust enrichment of Netrin-4 mRNA in anti-IGF2BP2 antibody immunoprecipitates. MeRlP showed significantly increased Netrin4 m6A levels after lGF2BP2 overexpression. Moreover, we found that IGF2BP2 recognized and bound to the m6A site within the coding sequence of Netrin-4, enhancing its mRNA stability. Collectively, these results showed that IGF2BP2 plays a suppressive role in the invasion and migration of ccRCC cells by targeting Netrin-4 in an m6A-dependent manner. These findings underscore the potential of IGF2BP2/Netrin-4 as a promising prognostic biomarker and therapeutic target in patients with ccRCC metastasis.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Invasividad Neoplásica , Netrinas , Proteínas de Unión al ARN , Humanos , Netrinas/genética , Netrinas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Pronóstico , Línea Celular Tumoral , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Femenino , Proliferación Celular , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
2.
Eur J Pharmacol ; 963: 176262, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101695

RESUMEN

Netrin G1 (NTNG1) is a member of the Netrin family and plays a crucial role in various human cancers. However, the molecular functions of NTNG1 in HCC and the underlying mechanisms remain unclear. HCC expression data was obtained from the GEO database and analyzed using various bioinformatics tools. The expression of NTNG1 in HCC tissues and liver cancer cells was evaluated through RT-qPCR and western blotting. Cells with stable NTNG1 overexpression and knockdown were established, and CCK-8, colony formation, and flow cytometry assays were conducted in vitro. The xenograft model was utilized to verify the tumorigenesis capacity of NTNG1 in vivo. IHC was employed to analyze the expression of NTNG1 and CD163 proteins. HCC-specific genes were screened, followed by functional enrichment and immune cell infiltration analysis. Finally, the Co-IP was used to detect the interaction between NTNG1 and N-cadherin. NTNG1 was highly expressed in HCC tissues and liver cancer cells, and associated with significantly poorer OS rates. In addition, NTNG1 overexpression in liver cancer cells significantly increased their proliferation, colony growth, invasion, migration, and EMT, while inhibiting apoptosis. Bioinformatics analyses indicated that NTNG1 was closely related to EMT and tumor infiltration. IHC staining revealed a positive correlation between NTNG1 expression and CD163 in HCC tissues. Additionally, an EMT inhibitor attenuated the expression levels of EMT-related markers and counteracted the effects of NTNG1 overexpression in liver cancer cells. This study is the first to identify NTNG1 as a potential therapeutic target in HCC, promoting tumor development and progression by regulating EMT.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Netrinas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Ligadas a GPI/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Netrinas/genética , Netrinas/metabolismo
3.
Oncol Rep ; 50(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800632

RESUMEN

It was recently reported that netrin­4 (Ntn­4), a component of the extracellular matrix, when downregulated, is involved in the progression of several types of cancer, including breast cancer, colorectal tumours, neuroblastoma and gastric cancer. In the present study, the level of Ntn­4 was examined in a public non­small cell lung cancer (NSCLC) dataset from the Netherlands Cancer Institute. This analysis revealed that the mRNA expression level of Ntn­4 was lower in the samples of patients with NSCLC compared with that in the control samples. Consistent with the mRNA level, the protein level of Ntn­4 was also found to be decreased in NSCLC cells. However, both the function of Ntn­4 and the underlying mechanisms of Ntn­4 downregulation in NSCLC have yet to be fully elucidated. As was anticipated, the overexpression of Ntn­4 led to a marked decrease in the proliferation, migration and invasion of NSCLC cells. Notably, RNA­binding protein quaking 5 (Qki­5) was found to exhibit antitumor activity in lung cancer, not only by enhancing the level of Ntn­4 by binding to Ntn­4 mRNA, but also by suppressing the proliferation, invasion and migration of NSCLC cells. However, Qki­5 is known to be frequently downregulated in NSCLC. Moreover, the knockdown of Ntn­4 was found to reverse the suppressive effects of Qki­5 on NSCLC progression both in vitro and in vivo. Taken together, the findings of the present study demonstrate that Ntn­4 is able to suppress the progression of NSCLC, and that the level of Ntn­4 can be regulated by Qki­5. Therefore, Ntn­4 may be a novel diagnostic and therapeutic target for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , Netrinas/genética , Netrinas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Cell Rep ; 42(3): 112144, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821439

RESUMEN

How axon guidance pathways are utilized in coordination with temporal and spatial patterning of neural progenitors to regulate neuropil assembly is not well understood. We study this question in the Drosophila medulla using the transmedullary (Tm) projection neurons that target lobula through the inner optic chiasm (IOC). We demonstrate that the Netrin pathway plays multiple roles in guidance of Tm axons and that temporal patterning of medulla neuroblasts determines pioneer versus follower Tm neurons during this process. Loss of Frazzled (Fra) in early-born pioneer Tm neurons leads to IOC defects, while loss of Fra from follower neurons does not affect the IOC. In the follower projection neurons, Fra is required in other targeting steps including lobula branch extension and layer-specific targeting. Furthermore, different from other identified scenarios of Netrin/Fra involved axon guidance in Drosophila, we demonstrate that diffusible Netrin is required for the correct axon targeting and optic lobe organization.


Asunto(s)
Proteínas de Drosophila , Drosophila , Netrina-1 , Animales , Axones/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Netrinas/genética , Netrinas/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo
5.
Dev Dyn ; 252(1): 172-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35112412

RESUMEN

BACKGROUND: Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS: Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION: Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.


Asunto(s)
Artrópodos , Proteínas de Drosophila , Animales , Netrinas/genética , Netrinas/metabolismo , Drosophila melanogaster/genética , Artrópodos/genética , Artrópodos/metabolismo , Orientación del Axón , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Axones/metabolismo , Receptores de Netrina/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(43): e2210421119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252008

RESUMEN

Low-threshold mechanoreceptors (LTMRs) and their cutaneous end organs convert light mechanical forces acting on the skin into electrical signals that propagate to the central nervous system. In mouse hairy skin, hair follicle-associated longitudinal lanceolate complexes, which are end organs comprising LTMR axonal endings that intimately associate with terminal Schwann cell (TSC) processes, mediate LTMR responses to hair deflection and skin indentation. Here, we characterized developmental steps leading to the formation of Aß rapidly adapting (RA)-LTMR and Aδ-LTMR lanceolate complexes. During early postnatal development, Aß RA-LTMRs and Aδ-LTMRs extend and prune cutaneous axonal branches in close association with nascent TSC processes. Netrin-G1 is expressed in these developing Aß RA-LTMR and Aδ-LTMR lanceolate endings, and Ntng1 ablation experiments indicate that Netrin-G1 functions in sensory neurons to promote lanceolate ending elaboration around hair follicles. The Netrin-G ligand (NGL-1), encoded by Lrrc4c, is expressed in TSCs, and ablation of Lrrc4c partially phenocopied the lanceolate complex deficits observed in Ntng1 mutants. Moreover, NGL-1-Netrin-G1 signaling is a general mediator of LTMR end organ formation across diverse tissue types demonstrated by the fact that Aß RA-LTMR endings associated with Meissner corpuscles and Pacinian corpuscles are also compromised in the Ntng1 and Lrrc4c mutant mice. Thus, axon-glia interactions, mediated in part by NGL-1-Netrin-G1 signaling, promote LTMR end organ formation.


Asunto(s)
Axones , Mecanorreceptores , Animales , Ratones , Axones/metabolismo , Ligandos , Mecanorreceptores/fisiología , Netrinas/genética , Netrinas/metabolismo , Células de Schwann , Piel
7.
Sci Adv ; 8(23): eabn3509, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687692

RESUMEN

Most genome-wide association study (GWAS)-identified breast cancer-associated causal variants remain uncharacterized. To provide a framework of understanding GWAS-identified variants to function, we performed a comprehensive study of noncoding regulatory variants at the NTN4 locus (12q22) and NTN4 gene in breast cancer etiology. We find that rs11836367 is the more likely causal variant, disrupting enhancer activity in both enhancer reporter assays and endogenous genome editing experiments. The protective T allele of rs11837367 increases the binding of GATA3 to the distal enhancer and up-regulates NTN4 expression. In addition, we demonstrate that loss of NTN4 gene in mice leads to tumor earlier onset, progression, and metastasis. We discover that NTN4, as a tumor suppressor, can attenuate the Wnt signaling pathway by directly binding to Wnt ligands. Our findings bridge the gaps among breast cancer-associated single-nucleotide polymorphisms, transcriptional regulation of NTN4, and breast cancer biology, which provides previously unidentified insights into breast cancer prediction and prevention.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Netrinas/metabolismo , Alelos , Animales , Predisposición Genética a la Enfermedad , Ratones , Neoplasias/genética , Netrinas/genética , Polimorfismo de Nucleótido Simple , Vía de Señalización Wnt/genética
8.
Sci Rep ; 12(1): 10567, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732855

RESUMEN

Netrin-4 (NTN4), a member of neurite guidance factor family, can promote neurite growth and elongation. This study aims to investigate if NTN4 correlates with prognosis and immune infiltration in breast cancer. The prognostic landscape of NTN4 and its relationship with immune infiltration in breast cancer were deciphered with public databases and immunohistochemistry (IHC) in tissue samples. The expression profiling and prognostic value of NTN4 were explored using UALCAN, TIMER, Kaplan-Meier Plotter and Prognoscan databases. Based on TIMER, relationships of NTN4 expression with tumor immune invasion and immune cell surface markers were evaluated. Transcription and survival analyses of NTN4 in breast cancer were investigated with cBioPortal database. The STRING database was explored to identify molecular functions and signaling pathways downstream of NTN4. NTN4 expression was significantly lower in invasive breast carcinoma compared with adjacent non-malignant tissues. Promoter methylation of NTN4 exhibited different patterns in breast cancer. Low expression of NTN4 was associated with poorer survival. NTN4 was significantly positively related to infiltration of CD8+ T cells, macrophages and neutrophils, whereas significantly negatively related to B cells and tumor purity. Association patterns varied with different subtypes. Various associations between NTN4 levels and immune cell surface markers were revealed. Different subtypes of breast cancer carried different genetic alterations. Mechanistically, NTN4 was involved in mediating multiple biological processes including morphogenesis and migration.


Asunto(s)
Neoplasias de la Mama , Netrinas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Femenino , Humanos , Inmunohistoquímica , Netrinas/genética , Pronóstico , Análisis de Supervivencia
9.
Am J Clin Nutr ; 116(4): 1168-1183, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35771992

RESUMEN

BACKGROUND: Physical activity (PA) prior to and during pregnancy may have intergenerational effects on offspring health through placental epigenetic modifications. We are unaware of epidemiologic studies on longitudinal PA and placental DNA methylation. OBJECTIVES: We evaluated the association between PA before and during pregnancy and placental DNA methylation. METHODS: Placental tissues were obtained at delivery and methylation was measured using HumanMethylation450 Beadchips for participants in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies-Singletons among 298 participants. Using the Pregnancy Physical Activity Questionnaire, women recalled periconception PA (past 12 mo) at 8-13 wk of gestation and PA since last visit at 4 follow-up visits at 16-22, 24-29, 30-33, and 34-37 wk. We conducted linear regression for associations of PA at each visit with methylation controlling for false discovery rate (FDR). Top 100 CpGs were queried for enrichment of functional pathways using Ingenuity Pathway Analysis. RESULTS: Periconception PA was significantly associated with 1 CpG site. PA since last visit for visits 1-4 was associated with 2, 2, 8, and 0 CpGs (log fold changes ranging from -0.0319 to 0.0080, after controlling for FDR). The largest change in methylation occurred at a site in TIMP2 , which is known to encode a protein critical for vasodilation, placentation, and uterine expansion during pregnancy (log fold change: -0.05; 95% CI: -0.06, -0.03 per metabolic equivalent of task-h/wk at 30-33 wk). Most significantly enriched pathways include cardiac hypertrophy signaling, B-cell receptor signaling, and netrin signaling. Significant CpGs and enriched pathways varied by visit. CONCLUSIONS: Recreational PA in the year prior and during pregnancy was associated with placental DNA methylation. The associated CpG sites varied based on timing of PA. If replicated, the findings may inform the mechanisms underlying the impacts of PA on placenta health. This study was registered at clinicaltrials.gov as NCT00912132.


Asunto(s)
Metilación de ADN , Epigenoma , Niño , Islas de CpG , Epigénesis Genética , Ejercicio Físico , Femenino , Humanos , Netrinas/genética , Netrinas/metabolismo , Placenta/metabolismo , Embarazo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo
10.
Clin Breast Cancer ; 22(4): e544-e551, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35232666

RESUMEN

INTRODUCTION: Genome-wide association studies have identified a genetic variant rs17356907 in netrin 4 (NTN4) as a risk locus of breast cancer (BC) in Europeans. NTN4 is a target gene of miR-17-92 cluster that is an oncogenic miRNA in BC development. We aimed to replicate the rs17356907 in a Chinese population and examine the interaction of NTN4 and miR-17-92 on BC susceptibility. MATERIALS AND METHODS: The rs17356907 in NTN4 and 3 additional polymorphisms in the promoter of miR-17-92 (ie, rs9588884, rs982873, and rs1813389) were determined in 415 patients with BC and 420 healthy controls using a TaqMan assay. The expression levels of NTN4 in BC and normal tissues were performed using the quantitative reverse transcription-PCR. RESULTS: With reference to the rs17356907AA genotype, the GG genotype was associated with a decreased risk of BC with an adjusted OR of 0.38 (95% CI: 0.20-0.74). With reference to the rs17356907AA-rs982873CT/CC genotypes, the rs17356907 AG/GG-rs982873CT/CC genotypes were associated with a borderline decreased risk of BC with an adjusted OR of 0.67 (95% CI: 0.48-0.93). Gene-gene interaction analysis showed that the rs17356907-rs982873-rs9588884-rs1813389 was the best model on BC susceptibility. Furthermore, the rs17356907GG genotype displayed higher levels of NTN4 mRNA. CONCLUSIONS: The NTN4 rs17356907 may have a single and interactive effect with miR-17-92 polymorphisms on the risk of BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Netrinas , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , China/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , MicroARNs/genética , Netrinas/genética , Polimorfismo de Nucleótido Simple
11.
Genetics ; 221(1)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35348689

RESUMEN

UNC-6/Netrin is a secreted conserved guidance cue that regulates dorsal-ventral axon guidance of Caenorhabditis elegans and in the vertebral spinal cord. In the polarity/protrusion model of VD growth cone guidance away from ventrally expressed UNC-6 (repulsion), UNC-6 first polarizes the growth cone via the UNC-5 receptor such that filopodial protrusions are biased dorsally. UNC-6 then regulates a balance of protrusion in the growth cone based upon this polarity. UNC-5 inhibits protrusion ventrally, and the UNC-6 receptor UNC-40/DCC stimulates protrusion dorsally, resulting in net dorsal growth cone outgrowth. UNC-5 inhibits protrusion through the flavin monooxygenases FMO-1, 4, and 5 and possible actin destabilization, and inhibits pro-protrusive microtubule entry into the growth cone utilizing UNC-33/CRMP. The PH/MyTH4/FERM myosin-like protein was previously shown to act with UNC-5 in VD axon guidance utilizing axon guidance endpoint analysis. Here, we analyzed the effects of MAX-1 on VD growth cone morphology during outgrowth. We found that max-1 mutant growth cones were smaller and less protrusive than wild type, the opposite of the unc-5 mutant phenotype. Furthermore, genetic interactions suggest that MAX-1 might normally inhibit UNC-5 activity, such that in a max-1 mutant growth cone, UNC-5 is overactive. Our results, combined with previous studies suggesting that MAX-1 might regulate UNC-5 levels in the cell or plasma membrane localization, suggest that MAX-1 attenuates UNC-5 signaling by regulating UNC-5 stability or trafficking. Alternately, MAX-1 might inhibit UNC-5 independent of this known mechanism. We also show that the effects of MAX-1 in growth cone protrusion are independent of UNC-40/DCC, UNC-33/CRMP, and UNC-34/Enabled. In summary, in the context of growth cone protrusion, MAX-1 inhibits UNC-5, demonstrating the mechanistic insight that can be gained by analyzing growth cones during outgrowth in addition to axon guidance endpoint analysis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Axones/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular/fisiología , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrinas/genética , Netrinas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
12.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910816

RESUMEN

The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.


Asunto(s)
Caspasas/genética , Proteínas de Drosophila/genética , Receptores de Netrina/genética , Netrinas/genética , Oogénesis/genética , Animales , Apoptosis/genética , Axones/metabolismo , Movimiento Celular/genética , Polaridad Celular/genética , Supervivencia Celular/genética , Citoesqueleto/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Óvulo/crecimiento & desarrollo
13.
Genes (Basel) ; 12(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073619

RESUMEN

Cerebral atherosclerosis is a leading cause of stroke and an important contributor to dementia. Yet little is known about its genetic basis. To examine the association of common single nucleotide polymorphisms with cerebral atherosclerosis severity, we conducted a genomewide association study (GWAS) using data collected as part of two community-based cohort studies in the United States, the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP). Both studies enroll older individuals and exclude participants with signs of dementia at baseline. From our analysis of 1325 participants of European ancestry who had genotype and neuropathologically assessed cerebral atherosclerosis measures available, we found a novel locus for cerebral atherosclerosis in NTNG1. The locus comprises eight SNPs, including two independent significant SNPs: rs6664221 (ß = -0.27, 95% CI = (-0.35, -0.19), p = 1.29 × 10-10) and rs10881463 (ß = -0.20, 95% CI = (-0.27, -0.13), p = 3.40 × 10-8). We further found that the SNPs may influence cerebral atherosclerosis by regulating brain protein expression of CNOT3. CNOT3 is a subunit of CCR4-NOT, which has been shown to be a master regulator of mRNA stability and translation and an important complex for cholesterol homeostasis. In summary, we identify a novel genetic locus for cerebral atherosclerosis and a potential mechanism linking this variation to cerebral atherosclerosis progression. These findings offer insights into the genetic effects on cerebral atherosclerosis.


Asunto(s)
Arteriosclerosis Intracraneal/genética , Netrinas/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Anciano , Anciano de 80 o más Años , Femenino , Proteínas Ligadas a GPI/genética , Humanos , Masculino , Persona de Mediana Edad
14.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34109380

RESUMEN

The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Netrinas/metabolismo , Animales , Orientación del Axón , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Microtúbulos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Netrina/metabolismo , Netrinas/genética , Neuronas/metabolismo , Transducción de Señal
15.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923095

RESUMEN

Diabetic retinopathy is characterized by dysfunction of the retinal vascular network, combined with a persistent low-grade inflammation that leads to vision-threatening complications. Netrin-4 (NTN4) is a laminin-related secreted protein and guidance cue molecule present in the vascular basal membrane and highly expressed in the retina. A number of studies inferred that the angiogenic abilities of NTN4 could contribute to stabilize vascular networks and modulate inflammation. Analyzing human specimens, we show that NTN4 and netrin receptors are upregulated in the diabetic retina. We further evaluated a knock-out model for NTN4 undergoing experimental diabetes induced by streptozotocin. We investigated retina function and immune cells in vivo and demonstrated that NTN4 provides a protective milieu against inflammation in the diabetic retina and prevents cytokine production.


Asunto(s)
Retinopatía Diabética/genética , Netrinas/genética , Retinitis/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Electrorretinografía , Regulación de la Expresión Génica , Humanos , Ratones Transgénicos , Netrinas/metabolismo , Retina/patología , Retina/fisiología , Retinitis/etiología
16.
Int J Biochem Cell Biol ; 134: 105960, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33636396

RESUMEN

Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium. Netrin-4 expression is upregulated in endothelial cells cultured under laminar flow conditions, while endothelial cells stimulated with tumor necrosis factor alpha resulted in decreased netrin-4 expression. Targeted reduction of netrin-4 in endothelial cells resulted in increased expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Besides, these endothelial cells were more prone to monocyte adhesion and showed impaired barrier function, measured with electric cell-substrate impedance sensing, as well as in an 'organ-on-a-chip' microfluidic system. Importantly, endothelial cells with reduced levels of netrin-4 showed increased expression of the senescence-associated markers cyclin-dependent kinase inhibitor-1 and -2A, an increased cell size and decreased ability to proliferate. Consistent with the gene expression profile, netrin-4 reduction was accompanied with more senescent associated ß-galactosidase activity, which could be rescued by adding netrin-4 protein. Finally, using human decellularized kidney extracellular matrix scaffolds, we found that pre-treatment of the scaffolds with netrin-4 increased numbers of endothelial cells adhering to the matrix, showing a pro-survival effect of netrin-4. Taken together, netrin-4 acts as an anti-senescence and anti-inflammation factor in endothelial cell function and our results provide insights as to maintain endothelial homeostasis and supporting vascular health.


Asunto(s)
Endotelio Vascular/metabolismo , Inflamación/prevención & control , Netrinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Células Cultivadas , Senescencia Celular/fisiología , Endotelio Vascular/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Netrinas/genética
17.
Acta Neuropathol Commun ; 8(1): 193, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183353

RESUMEN

Frequently reported neurotoxic sequelae of cancer treatment include cognitive deficits and sensorimotor abnormalities that have long-lasting negative effects on the quality of life of an increasing number of cancer survivors. The underlying mechanisms are not fully understood and there is no effective treatment. We show here that cisplatin treatment of mice not only caused cognitive dysfunction but also impaired sensorimotor function. These functional deficits are associated with reduced myelin density and complexity in the cingulate and sensorimotor cortex. At the ultrastructural level, myelin abnormalities were characterized by decompaction. We used this model to examine the effect of bexarotene, an agonist of the RXR-family of nuclear receptors. Administration of only five daily doses of bexarotene after completion of cisplatin treatment was sufficient to normalize myelin density and fiber coherency and to restore myelin compaction in cingulate and sensorimotor cortex. Functionally, bexarotene normalized performance of cisplatin-treated mice in tests for cognitive and sensorimotor function. RNAseq analysis identified the TR/RXR pathway as one of the top canonical pathways activated by administration of bexarotene to cisplatin-treated mice. Bexarotene also activated neuregulin and netrin pathways that are implicated in myelin formation/maintenance, synaptic function and axonal guidance. In conclusion, short term treatment with bexarotene is sufficient to reverse the adverse effects of cisplatin on white matter structure, cognitive function, and sensorimotor performance. These encouraging findings warrant further studies into potential clinical translation and the underlying mechanisms of bexarotene for chemobrain.


Asunto(s)
Antineoplásicos/farmacología , Bexaroteno/farmacología , Cisplatino/toxicidad , Cognición/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Corteza Sensoriomotora/efectos de los fármacos , Animales , Antineoplásicos/toxicidad , Deterioro Cognitivo Relacionado con la Quimioterapia/metabolismo , Deterioro Cognitivo Relacionado con la Quimioterapia/patología , Deterioro Cognitivo Relacionado con la Quimioterapia/fisiopatología , Marcha/efectos de los fármacos , Perfilación de la Expresión Génica , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Giro del Cíngulo/fisiopatología , Ratones , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Netrinas/efectos de los fármacos , Netrinas/genética , Netrinas/metabolismo , Neurregulinas/efectos de los fármacos , Neurregulinas/genética , Neurregulinas/metabolismo , Prueba de Campo Abierto , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , RNA-Seq , Receptores X Retinoide/efectos de los fármacos , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/patología , Corteza Sensoriomotora/fisiopatología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
18.
Am J Hum Genet ; 107(4): 778-787, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871102

RESUMEN

Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Neoplasias/genética , Netrinas/genética , Alelos , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica/métodos , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Netrinas/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Riesgo
19.
In Vivo ; 34(3 Suppl): 1633-1636, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32503822

RESUMEN

In a previous study, we identified a 117 base severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence in the human genome with 94.6% identity. The sequence was in chromosome 1p within an intronic region of the netrin G1 (NTNG1) gene. The sequence matched a sequence in the SARS-CoV-2 Orf1b gene in non-structural protein 14 (NSP14), which is an exonuclease and NSP15, an endoribonuclease. In the current study we compared the human genome with other viral genomes to determine some of the characteristics of human sequences found in the latter. Most of the viruses had human sequences, but they were short. Hepatitis A and St Louis encephalitis had human sequences that were longer than the 117 base SARS-Cov-2 sequence, but they were in non-coding regions of the human genome. The SARS-Cov-2 sequence was the only long sequence found in a human gene (NTNG1). The related coronaviruses SARS-Cov had a 41 BP human sequence on chromosome 3 that was not part of a human gene, and MERS had no human sequence. The 117 base SARS-CoV-2 human sequence is relatively close to the viral spike sequence, separated only by NSP16, a 904 base sequence. The mechanism for SARS-CoV-2 infection is the binding of the virus spike protein to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. We have no explanation for the NSP14 and NSP15 SARS-Cov-2 sequences we observed here or how they might relate to infectiousness. Further studies are warranted.


Asunto(s)
Betacoronavirus/genética , Exorribonucleasas/genética , Genoma Viral , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas no Estructurales Virales/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 3/genética , Virus ADN/genética , Endorribonucleasas , Proteínas Ligadas a GPI/genética , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Netrinas/genética , SARS-CoV-2 , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Proteínas Virales/genética
20.
Development ; 147(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32439759

RESUMEN

The anchor cell (AC) in C. elegans secretes an epidermal growth factor (EGF) homolog that induces adjacent vulval precursor cells (VPCs) to differentiate. The EGF receptor in the nearest VPC sequesters the limiting EGF amounts released by the AC to prevent EGF from spreading to distal VPCs. Here, we show that not only EGFR localization in the VPCs but also EGF polarity in the AC is necessary for robust fate specification. The AC secretes EGF in a directional manner towards the nearest VPC. Loss of AC polarity causes signal spreading and, when combined with MAPK pathway hyperactivation, the ectopic induction of distal VPCs. In a screen for genes preventing distal VPC induction, we identified sra-9 and nlp-26 as genes specifically required for polarized EGF secretion. sra-9(lf) and nlp-26(lf) mutants exhibit errors in vulval fate specification, reduced precision in VPC to AC alignment and increased variability in MAPK activation. sra-9 encodes a seven-pass transmembrane receptor acting in the AC and nlp-26 a neuropeptide-like protein expressed in the VPCs. SRA-9 and NLP-26 may transduce a feedback signal to channel EGF secretion towards the nearest VPC.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Vulva/metabolismo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Factor de Crecimiento Epidérmico/genética , Receptores ErbB/metabolismo , Femenino , Edición Génica , Larva/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutagénesis , Netrinas/genética , Netrinas/metabolismo , Interferencia de ARN , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Vulva/citología , Vulva/crecimiento & desarrollo , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...