Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103644

RESUMEN

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Asunto(s)
Mutación , Sialiltransferasas , Humanos , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos , Simulación por Computador , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Mutación Puntual , Conformación Proteica en Lámina beta , Transporte de Proteínas , Bosques Aleatorios , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
2.
FEBS J ; 290(2): 252-265, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699130

RESUMEN

Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.


Asunto(s)
Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme Alternativo , Heparitina Sulfato/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074912

RESUMEN

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Moléculas de Adhesión de Célula Nerviosa/genética , Inhibición Neural , Sinapsis/metabolismo , Precursor de Proteína beta-Amiloide/genética , Región CA1 Hipocampal , Proteínas Portadoras , Dendritas/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas , Modelos Biológicos , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Inhibición Neural/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Células Piramidales/metabolismo , Receptores de GABA-B/metabolismo , Transmisión Sináptica
4.
Open Biol ; 11(10): 210091, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610269

RESUMEN

Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.


Asunto(s)
Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Familia de Multigenes , Proteínas del Tejido Nervioso/química , Moléculas de Adhesión de Célula Nerviosa/química , Mapas de Interacción de Proteínas
5.
Biochem Biophys Res Commun ; 551: 54-62, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33721831

RESUMEN

Octodon degus is said to be one of the most human-like rodents because of its improved cognitive function. Focusing on its high sociality, we cloned and characterized some sociality-related genes of degus, in order to establish degus as a highly socialized animal model in molecular biology. We cloned degus Neurexin and Neuroligin as sociality-related genes, which are genetically related to autism spectrum disorder in human. According to our results, amino acid sequences of Neurexin and Neuroligin expressed in degus brain, are highly conserved to that of human sequences. Most notably, degus Neuroligin4 is highly similar to human Neuroligin4X, which is one of the most important autism-related genes, whereas mouse Neuroligin4 is known to be poorly similar to human Neuroligin4X. Furthermore, our work also indicated that testosterone directly binds to degus Neurexin and intercepts intercellular Neurexin-Neuroligin binding. Moreover, it is of high interest that testosterone is another key molecule of the higher incidence of autism in male. These results indicated that degus has the potential for animal model of sociality, and furthermore may promote understanding toward the pathogenic mechanism of autism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Octodon/metabolismo , Receptores de Superficie Celular/metabolismo , Testosterona/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Proteínas de Unión al Calcio/química , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Hipocampo/metabolismo , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Receptores de Superficie Celular/química , Globulina de Unión a Hormona Sexual/química , Testosterona/farmacología
6.
Nat Commun ; 12(1): 1848, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758193

RESUMEN

Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Secuencia de Aminoácidos , Animales , Trastorno del Espectro Autista/metabolismo , Escala de Evaluación de la Conducta , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Dominios Proteicos , Empalme de Proteína , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Recombinantes , Transducción de Señal/genética , Transducción de Señal/fisiología , Conducta Social , Sinapsis/genética
7.
J Mol Biol ; 432(19): 5287-5303, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710982

RESUMEN

Neuronal growth regulator 1 (NEGR1) and neurotrimin (NTM) are abundant cell-surface proteins found in the brain and form part of the IgLON (Immunoglobulin LSAMP, OBCAM, Neurotrimin) family. In humans, NEGR1 is implicated in obesity and mental disorders, while NTM is linked to intelligence and cognitive function. IgLONs dimerize homophilically and heterophilically, and they are thought to shape synaptic connections and neural circuits by acting in trans (spanning cellular junctions) and/or in cis (at the same side of a junction). Here, we reveal homodimeric structures of NEGR1 and NTM. They assemble into V-shaped complexes via their Ig1 domains, and disruption of the Ig1-Ig1 interface abolishes dimerization in solution. A hydrophobic ridge from one Ig1 domain inserts into a hydrophobic pocket from the opposing Ig1 domain producing an interaction interface that is highly conserved among IgLONs but remarkably plastic structurally. Given the high degree of sequence conservation at the interaction interface, we tested whether different IgLONs could elicit the same biological effect in vivo. In a small-scale study administering different soluble IgLONs directly into the brain and monitoring feeding, only NEGR1 altered food intake significantly. Taking NEGR1 as a prototype, our studies thus indicate that while IgLONs share a conserved mode of interaction and are able to bind each other as homomers and heteromers, they are structurally plastic and can exert unique biological action.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión de Célula Nerviosa/química , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Cristalografía por Rayos X , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ratas Sprague-Dawley
8.
Anal Biochem ; 587: 113463, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31574254

RESUMEN

Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest for both biological studies, and towards drug development. Therefore, we decided to develop a screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find small molecule probes for further studies in cellular settings. To our knowledge, no potent small molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. We carried out screening of 2000 compounds and identified hits with moderate IC50-values. We also established an orthogonal in-cell Western blot assay to validate hits. This paves way for future development of specific high affinity compounds by further high throughput screening of larger compound libraries using the methods established here. The method could also be applied to screening other NRXN-ligand interactions.


Asunto(s)
Proteínas de Unión al Calcio/antagonistas & inhibidores , Enfermedades del Sistema Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Proteínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Drosophila , Proteínas Repetidas Ricas en Leucina , Ratones , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas/química , Proteínas/metabolismo
9.
EMBO J ; 38(22): e101603, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31566781

RESUMEN

Neurexins are presynaptic, cell-adhesion molecules that specify the functional properties of synapses via interactions with trans-synaptic ligands. Neurexins are extensively alternatively spliced at six canonical sites that regulate multifarious ligand interactions, but the structural mechanisms underlying alternative splicing-dependent neurexin regulation are largely unknown. Here, we determined high-resolution structures of the complex of neurexophilin-1 and the second laminin/neurexin/sex-hormone-binding globulin domain (LNS2) of neurexin-1 and examined how alternative splicing at splice site #2 (SS2) regulates the complex. Our data reveal a unique, extensive, neurexophilin-neurexin binding interface that extends the jelly-roll ß-sandwich of LNS2 of neurexin-1 into neurexophilin-1. The SS2A insert of LNS2 augments this interface, increasing the binding affinity of LNS2 for neurexophilin-1. Taken together, our data reveal an unexpected architecture of neurexophilin-neurexin complexes that accounts for the modulation of binding by alternative splicing, which in turn regulates the competition of neurexophilin for neurexin binding with other ligands.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Laminina/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Glicoproteínas/genética , Ligandos , Ratones , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/genética , Neuropéptidos/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Ratas , Homología de Secuencia
10.
Curr Top Med Chem ; 19(25): 2271-2282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648641

RESUMEN

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Asunto(s)
Movimiento Celular , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Animales , Humanos , Moléculas de Adhesión de Célula Nerviosa/química , Ácidos Siálicos/química
11.
Structure ; 27(6): 893-906.e9, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30956130

RESUMEN

In the developing brain, cell-surface proteins play crucial roles, but their protein-protein interaction network remains largely unknown. A proteomic screen identified 200 interactions, 89 of which were not previously published. Among these interactions, we find that the IgLONs, a family of five cell-surface neuronal proteins implicated in various human disorders, interact as homo- and heterodimers. We reveal their interaction patterns and report the dimeric crystal structures of Neurotrimin (NTRI), IgLON5, and the neuronal growth regulator 1 (NEGR1)/IgLON5 complex. We show that IgLONs maintain an extended conformation and that their dimerization occurs through the first Ig domain of each monomer and is Ca2+ independent. Cell aggregation shows that NTRI and NEGR1 homo- and heterodimerize in trans. Taken together, we report 89 unpublished cell-surface ligand-receptor pairs and describe structural models of trans interactions of IgLONs, showing that their structures are compatible with a model of interaction across the synaptic cleft.


Asunto(s)
Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Ligandos , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
12.
Nat Commun ; 9(1): 3964, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262834

RESUMEN

Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) function as postsynaptic organizers that induce excitatory synapses. Neurexins (Nrxns) and heparan sulfate proteoglycans have been identified as presynaptic ligands for LRRTMs. Specifically, LRRTM1 and LRRTM2 bind to the Nrxn splice variant lacking an insert at the splice site 4 (S4). Here, we report the crystal structure of the Nrxn1ß-LRRTM2 complex at 3.4 Å resolution. The Nrxn1ß-LRRTM2 interface involves Ca2+-mediated interactions and overlaps with the Nrxn-neuroligin interface. Together with structure-based mutational analyses at the molecular and cellular levels, the present structural analysis unveils the mechanism of selective binding between Nrxn and LRRTM1/2 and its modulation by the S4 insertion of Nrxn.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Moléculas de Adhesión de Célula Nerviosa/química , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica
13.
Sci Rep ; 8(1): 6143, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670169

RESUMEN

Perineuronal nets (PNNs) are implicated in closure of critical periods of synaptic plasticity in the brain, but the molecular mechanisms by which PNNs regulate synapse development are obscure. A receptor complex of NCAM and EphA3 mediates postnatal remodeling of inhibitory perisomatic synapses of GABAergic interneurons onto pyramidal cells in the mouse frontal cortex necessary for excitatory/inhibitory balance. Here it is shown that enzymatic removal of PNN glycosaminoglycan chains decreased the density of GABAergic perisomatic synapses in mouse organotypic cortical slice cultures. Neurocan, a key component of PNNs, was expressed in postnatal frontal cortex in apposition to perisomatic synapses of parvalbumin-positive interneurons. Polysialylated NCAM (PSA-NCAM), which is required for ephrin-dependent synapse remodeling, bound less efficiently to neurocan than mature, non-PSA-NCAM. Neurocan bound the non-polysialylated form of NCAM at the EphA3 binding site within the immunoglobulin-2 domain. Neurocan inhibited NCAM/EphA3 association, membrane clustering of NCAM/EphA3 in cortical interneuron axons, EphA3 kinase activation, and ephrin-A5-induced growth cone collapse. These studies delineate a novel mechanism wherein neurocan inhibits NCAM/EphA3 signaling and axonal repulsion, which may terminate postnatal remodeling of interneuron axons to stabilize perisomatic synapses in vivo.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurocano/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Humanos , Ratones , Moléculas de Adhesión de Célula Nerviosa/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas Receptoras/química , Receptor EphA3
15.
Biochemistry ; 56(10): 1504-1517, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28233978

RESUMEN

Polysialic acid (polySia) is a unique post-translational modification found on a small set of mammalian glycoproteins. Composed of long chains of α2,8-linked sialic acid, this large, negatively charged polymer attenuates protein and cell adhesion and modulates signaling mediated by its carriers and proteins that interact with these carriers. PolySia is crucial for the proper development of the nervous system and is upregulated during tissue regeneration and in highly invasive cancers. Our laboratory has previously shown that the neural cell adhesion molecule, NCAM, has an acidic surface patch in its first fibronectin type III repeat (FN1) that is critical for the polysialylation of N-glycans on the adjacent immunoglobulin domain (Ig5). We have also identified a polysialyltransferase (polyST) polybasic region (PBR) that may mediate substrate recognition. However, a direct interaction between the NCAM FN1 acidic patch and the polyST PBR has yet to be demonstrated. Here, we have probed this interaction using isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. We observe direct and specific binding between FN1 and the PBR peptide that is dependent upon acidic residues in FN1 and basic residues of the PBR. NMR titration experiments verified the role of the FN1 acidic patch in the recognition of the PBR and suggest a conformational change of the Ig5-FN1 linker region following binding of the PBR to the acidic patch. Finally, mutation of residues identified by NMR titration experiments impacts NCAM polysialylation, supporting their mechanistic role in protein-specific polysialylation.


Asunto(s)
Dominio de Fibronectina del Tipo III/genética , Moléculas de Adhesión de Célula Nerviosa/química , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Ácidos Siálicos/química , Sialiltransferasas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histidina/genética , Histidina/metabolismo , Humanos , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Alineación de Secuencia , Ácidos Siálicos/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
16.
Glycoconj J ; 34(3): 363-376, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28101734

RESUMEN

Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.


Asunto(s)
Sistema Nervioso Central/química , Sulfatos de Condroitina/química , Proteínas de la Matriz Extracelular/química , Péptidos y Proteínas de Señalización Intercelular/química , Moléculas de Adhesión de Célula Nerviosa/química , Neuronas/química , Animales , Conformación de Carbohidratos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Sistema Nervioso Central/metabolismo , Sulfatos de Condroitina/metabolismo , Citocinas/química , Citocinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Midkina , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteoglicanos/química , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/química , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo
17.
Chembiochem ; 18(13): 1188-1193, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27966821

RESUMEN

Sialuria is a rare autosomal dominant disorder of mammalian metabolism, caused by defective feedback inhibition of the UDP-N-acetylglucosamine-2-epimerase N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. Sialuria is characterized by overproduction of free sialic acid in the cell cytoplasm. Patients exhibit vastly increased urinary excretion of sialic acid and show differently pronounced developmental delays. The physiopathology of sialuria is not well understood. Here we established a transgenic mouse line that expresses GNE containing the sialuria mutation R263L, in order to investigate the influence of an altered sialic acid concentration on the organism. The transgenic mice that expressed the mutated RNA excreted up to 400 times more N-acetylneuraminic acid than wild-type mice. Additionally, we found higher sialic acid concentration in the brain cytoplasm. Analyzing the (poly)sialylation of neural cell adhesion molecule (NCAM) revealed increased polysialylation in brains of transgenic mice compared to wild-type. However, we found only minor changes in membrane-bound sialylation in various organs but, surprisingly, a significant increase in surface sialylation on leukocytes. Our results suggest that the intracellular sialic acid concentration regulates polysialylation on NCAM in vivo; this could play a role in the manifestation of the developmental delays in sialuria patients.


Asunto(s)
Leucocitos/metabolismo , Complejos Multienzimáticos/genética , Ácido N-Acetilneuramínico/orina , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedad por Almacenamiento de Ácido Siálico/metabolismo , Factores de Edad , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Humanos , Leucocitos/patología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/deficiencia , Mutación , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Especificidad de Órganos , Enfermedad por Almacenamiento de Ácido Siálico/genética , Enfermedad por Almacenamiento de Ácido Siálico/patología
18.
J Biol Chem ; 291(42): 21857-21868, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27535221

RESUMEN

The cellular form of the prion protein (PrPC) is a highly conserved glycoprotein mostly expressed in the central and peripheral nervous systems by different cell types in mammals. A misfolded, pathogenic isoform, denoted as prion, is related to a class of neurodegenerative diseases known as transmissible spongiform encephalopathy. PrPC function has not been unequivocally clarified, and it is rather defined as a pleiotropic protein likely acting as a dynamic cell surface scaffolding protein for the assembly of different signaling modules. Among the variety of PrPC protein interactors, the neuronal cell adhesion molecule (NCAM) has been studied in vivo, but the structural basis of this functional interaction is still a matter of debate. Here we focused on the structural determinants responsible for human PrPC (HuPrP) and NCAM interaction using stimulated emission depletion (STED) nanoscopy, SPR, and NMR spectroscopy approaches. PrPC co-localizes with NCAM in mouse hippocampal neurons, and this interaction is mainly mediated by the intrinsically disordered PrPC N-terminal tail, which binds with high affinity to the NCAM fibronectin type-3 domain. NMR structural investigations revealed surface-interacting epitopes governing the interaction between HuPrP N terminus and the second module of the NCAM fibronectin type-3 domain. Our data provided molecular details about the interaction between HuPrP and the NCAM fibronectin domain, and revealed a new role of PrPC N terminus as a dynamic and functional element responsible for protein-protein interaction.


Asunto(s)
Hipocampo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas PrPC/metabolismo , Animales , Hipocampo/química , Humanos , Ratones , Moléculas de Adhesión de Célula Nerviosa/química , Resonancia Magnética Nuclear Biomolecular , Proteínas PrPC/química , Dominios Proteicos
19.
Sci Adv ; 2(5): e1501118, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386517

RESUMEN

The Drosophila neural receptor Dscam1 (Down syndrome cell adhesion molecule 1) plays an essential role in neuronal wiring and self-avoidance. Dscam1 potentially encodes 19,008 ectodomains through alternative RNA splicing and exhibits exquisite isoform-specific homophilic binding, which makes it an exceptional example for studying protein binding specificity. However, structural information on Dscam1 is limited, which hinders illumination of the mechanism of Dscam1 isoform-specific recognition. Whether different Dscam1 isoforms adopt the same dimerization mode remains a subject of debate. We present 12 Dscam1 crystal structures, provide direct evidence indicating that all isoforms adopt a conserved homodimer geometry in a modular fashion, identify two mechanisms for the Ig2 binding domain to dispel electrostatic repulsion during dimerization, decode Ig2 binding specificity by a central motif at its symmetry center, uncover the role of glycosylation in Dscam1 homodimerization, and find electrostatic potential complementarity to help define the binding region and the antiparallel binding mode. We then propose a concept that the context of a protein may set restrictions to regulate its binding specificity, which provides a better understanding of protein recognition.


Asunto(s)
Proteínas de Drosophila/química , Moléculas de Adhesión de Célula Nerviosa/química , Multimerización de Proteína , Empalme Alternativo , Secuencia de Aminoácidos , Moléculas de Adhesión Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicosilación , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Electricidad Estática
20.
Insect Mol Biol ; 25(4): 413-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26991800

RESUMEN

The arthropod Down syndrome cell adhesion molecule (Dscam) mediates pathogen-specific recognition via an extensive protein isoform repertoire produced by alternative splicing. To date, most studies have focused on the subsequent pathogen-specific immune response, and few have investigated the entry into cells of viruses or endosymbionts. In the present study, we cloned and characterized the cDNA of Laodelphax striatellus Dscam (LsDscam) and investigated the function of LsDscam in rice stripe virus (RSV) infection and the influence on the endosymbiont Wolbachia. LsDscam displayed a typical Dscam domain architecture, including 10 immunoglobulin (Ig) domains, six fibronectin type III domains, one transmembrane domain and a cytoplasmic tail. Alternative splicing occurred at the N-termini of the Ig2 and Ig3 domains, the complete Ig7 domain, the transmembrane domain and the C-terminus, comprising 10, 51, 35, two and two variable exons, respectively. Potentially LsDscam could encode at least 71 400 unique isoforms and 17 850 types of extracellular regions. LsDscam was expressed in various L. striatellus tissues. Knockdown of LsDscam mRNA via RNA interference decreased the titres of both RSV and Wolbachia, but did not change the numbers of the extracellular symbiotic bacterium Acinetobacter rhizosphaerae. Specific Dscam isoforms may play roles in enhancing the infection of vector-borne viruses or endosymbionts.


Asunto(s)
Hemípteros/microbiología , Hemípteros/fisiología , Proteínas de Insectos/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Oryza/virología , Enfermedades de las Plantas/virología , Tenuivirus/fisiología , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Hemípteros/genética , Hemípteros/crecimiento & desarrollo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Insectos Vectores/genética , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/microbiología , Insectos Vectores/fisiología , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Ninfa/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Simbiosis , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA