Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 421
1.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article En | MEDLINE | ID: mdl-38729676

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
2.
Genesis ; 62(3): e23602, 2024 Jun.
Article En | MEDLINE | ID: mdl-38721990

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Cilia , Neural Tube , Animals , Mice , Cilia/metabolism , Cilia/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Point Mutation , Signal Transduction
3.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38682273

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.


Neural Tube Defects , Neural Tube , Neurulation , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Mice , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Neural Tube/metabolism , Neurulation/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Formates/metabolism , Embryo, Mammalian/metabolism , Female , Formate-Tetrahydrofolate Ligase/genetics , Formate-Tetrahydrofolate Ligase/metabolism , Mutation/genetics , Biomechanical Phenomena , Microscopy, Confocal , Mice, Knockout
4.
Reprod Toxicol ; 125: 108576, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479591

Folate is a micronutrient essential for DNA synthesis, cell division, fetal growth and development. Folate deficiency leads to genomic instability. Inadequate intake of folate during conception may lead to neural tube defects (NTDs) in the offspring. Folate influences the DNA methylation, histone methylation and homocysteine mediated gene methylation. DNA methylation influences the expression of microRNAs (miRNAs). Folate deficiency may be associated with miRNAs misregulation leading to NTDs. Mitochondrial epigenetics and folate metabolism has proved to be involved in embryogenesis and neural tube development. Folate related genetic variants also cause the occurrence of NTDs. Unmetabolized excessive folate may affect health adversely. Hence estimation of folate levels in the blood plays an important role in high-risk cases.


Folic Acid Deficiency , MicroRNAs , Neural Tube Defects , Humans , Folic Acid , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Folic Acid Deficiency/complications , Folic Acid Deficiency/genetics , Folic Acid Deficiency/metabolism , Epigenesis, Genetic , DNA Methylation , MicroRNAs/genetics , Neural Tube/metabolism
5.
Nat Commun ; 15(1): 1642, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388461

Folate supplementation reduces the occurrence of neural tube defects (NTDs), birth defects consisting in the failure of the neural tube to form and close. The mechanisms underlying NTDs and their prevention by folate remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. FOLR1 knockdown in neural organoids and in Xenopus laevis embryos leads to NTDs that are rescued by pteroate, a folate precursor that is unable to participate in metabolism. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein, molecule essential for apical endocytosis and turnover of C-cadherin in neural plate cells. In addition, folates increase Ca2+ transient frequency, suggesting that folate and FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.


Folic Acid , Neural Tube Defects , Humans , Folic Acid/metabolism , Neural Tube/metabolism , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Plate/metabolism
6.
Food Chem Toxicol ; 186: 114538, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387523

Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.


Arsenic , Neural Tube Defects , Mice , Animals , Arsenic/toxicity , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1 , Antioxidants , Neural Tube/metabolism , Autophagy/physiology , Folic Acid/adverse effects , Neural Tube Defects/chemically induced
7.
Development ; 151(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38300806

Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development. The maxillary prominence epithelium in embryos lacking Grhl2 shows substantial morphological abnormalities and significant upregulation of NOG expression, together with aberrantly distributed pSMAD5-positive cells within the neural crest cell-derived maxillary prominence mesenchyme, indicative of disrupted BMP signalling. Reducing this elevated NOG expression (by generating Grhl2-/-;Nog+/- embryos) results in delayed embryonic lethality, partial tissue fusion rescue, and restoration of tissue form within the craniofacial epithelia. These data suggest that aberrant epithelial maintenance, partially regulated by noggin-mediated regulation of BMP-SMAD pathways, may underpin tissue fusion defects in Grhl2-/- mice.


Cleft Lip , Cleft Palate , Neural Tube Defects , Animals , Mice , Bone Morphogenetic Proteins/metabolism , Mammals/metabolism , Neural Tube/metabolism , Nogo Receptors/metabolism
8.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Article En | MEDLINE | ID: mdl-38171360

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Cell Membrane Structures , Myosins , Neural Tube , Signal Transduction , Animals , Mice , Biological Transport , Cell Membrane Structures/metabolism , Hedgehog Proteins/metabolism , Myosins/metabolism , Pseudopodia/metabolism , Neural Tube/cytology , Neural Tube/metabolism
9.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38287904

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Cytoskeletal Proteins , Neural Tube Defects , Animals , Cytoskeletal Proteins/metabolism , Neural Tube/metabolism , Macaca fascicularis , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/veterinary , Neuroepithelial Cells/metabolism , Folic Acid/metabolism , Organoids , Cytoskeleton
10.
J Environ Sci (China) ; 138: 572-584, 2024 Apr.
Article En | MEDLINE | ID: mdl-38135421

Birth defects have become a public health concern. The hazardous environmental factors exposure to embryos could increase the risk of birth defects. Cadmium, a toxic environmental factor, can cross the placental barrier during pregnancy. Pregnant woman may be subjected to cadmium before taking precautionary protective actions. However, the link between birth defects and cadmium remains obscure. Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses. Cadmium exposure activated the p53 via enhancing the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and reactive oxygen species' (ROS) level. And cadmium decreases the level of Paired box 3 (Pax3) and murine double minute 2 (Mdm2), disrupting the process of p53 ubiquitylation. And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses. Excessive apoptosis led to the failure of neural tube closure. The study emphasizes that environmental materials may increase the health risk for embryos. Cadmium caused the failure of neural tube closure during early embryotic day. Pregnant women may be exposed by cadmium before taking precautionary protective actions, because of cadmium concentration-containing foods and environmental tobacco smoking. This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.


Neural Tube Defects , Female , Pregnancy , Humans , Animals , Mice , Neural Tube Defects/chemically induced , Neural Tube Defects/metabolism , Cadmium/toxicity , Cadmium/metabolism , Neural Tube/metabolism , PAX3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Placenta/metabolism , Apoptosis
11.
Dis Model Mech ; 16(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37885410

Sonic hedgehog (Shh) signaling is the morphogen signaling that regulates embryonic craniofacial and neural tube development. G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling, and its inactivation in mice results in embryo lethality associated with craniofacial defects and neural tube defects. However, the structural defects of later embryonic stages and cell lineages underlying abnormalities have not been well characterized due to the limited lifespan of Gpr161 null mice. We found that embryos with Pax3 lineage-specific deletion of Gpr161 presented with tectal hypertrophy (anterior dorsal neuroepithelium), cranial vault and facial bone hypoplasia (cranial neural crest), vertebral abnormalities (somite) and the closed form of spina bifida (posterior dorsal neuroepithelium). In particular, the closed form of spina bifida was partly due to reduced Pax3 and Cdx4 gene expression in the posterior dorsal neural tubes of Gpr161 mutant embryos with decreased Wnt signaling, whereas Shh signaling was increased. We describe a previously unreported role for Gpr161 in the development of posterior neural tubes and confirm its role in cranial neural crest- and somite-derived skeletogenesis and midbrain morphogenesis in mice.


Neural Tube , Spinal Dysraphism , Mice , Animals , Neural Tube/metabolism , Hedgehog Proteins/metabolism , Transcription Factors/metabolism , Embryonic Development , Wnt Signaling Pathway , Neurogenesis , Spine
12.
Biol Rev Camb Philos Soc ; 98(6): 2271-2283, 2023 12.
Article En | MEDLINE | ID: mdl-37534608

Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.


Neurulation , Zebrafish , Animals , Cell Adhesion , Neural Tube/metabolism , Neural Plate/metabolism
13.
Trends Endocrinol Metab ; 34(9): 539-553, 2023 09.
Article En | MEDLINE | ID: mdl-37468429

Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.


Folic Acid , Neural Tube Defects , Humans , Female , Pregnancy , Folic Acid/metabolism , Neural Tube/metabolism , Neurulation , Placenta/metabolism , Neural Tube Defects/etiology , Neural Tube Defects/metabolism , Neural Tube Defects/prevention & control
14.
Development ; 150(14)2023 07 15.
Article En | MEDLINE | ID: mdl-37390294

Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.


Neural Tube Defects , Mice , Animals , Neural Tube Defects/metabolism , Neural Tube/metabolism , Neurulation , Germ Layers/metabolism , Cell Polarity/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism
15.
Proc Natl Acad Sci U S A ; 120(23): e2220037120, 2023 06 06.
Article En | MEDLINE | ID: mdl-37252980

The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.


Calcium , Hedgehog Proteins , Xenopus Proteins , Calcium/metabolism , Cell Differentiation , Cilia/metabolism , Hedgehog Proteins/metabolism , Neural Tube/metabolism , Neurogenesis/physiology , Xenopus laevis , Animals
16.
Development ; 150(10)2023 05 15.
Article En | MEDLINE | ID: mdl-37102683

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Homeodomain Proteins , Tretinoin , Mice , Animals , Tretinoin/metabolism , Homeodomain Proteins/metabolism , Mice, Transgenic , Neural Tube/metabolism , In Situ Hybridization, Fluorescence , Enhancer Elements, Genetic
17.
Dis Model Mech ; 16(3)2023 03 01.
Article En | MEDLINE | ID: mdl-36916392

Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.


Neural Tube Defects , Spinal Dysraphism , Mice , Animals , Humans , Neural Tube/metabolism , Actomyosin/metabolism , Neural Tube Defects/genetics , Neurulation , Mammals/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
18.
Sci Rep ; 13(1): 3905, 2023 03 08.
Article En | MEDLINE | ID: mdl-36890135

Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.


Cadherins , Neural Tube , Mice , Animals , Neural Tube/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Polarity/genetics , Wnt Signaling Pathway/physiology , Epithelium
19.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article En | MEDLINE | ID: mdl-36768481

Neurulation is a crucial process in the formation of the central nervous system (CNS), which begins with the folding and fusion of the neural plate, leading to the generation of the neural tube and subsequent development of the brain and spinal cord. Environmental and genetic factors that interfere with the neurulation process promote neural tube defects (NTDs). Connexins (Cxs) are transmembrane proteins that form gap junctions (GJs) and hemichannels (HCs) in vertebrates, allowing cell-cell (GJ) or paracrine (HCs) communication through the release of ATP, glutamate, and NAD+; regulating processes such as cell migration and synaptic transmission. Changes in the state of phosphorylation and/or the intracellular redox potential activate the opening of HCs in different cell types. Cxs such as Cx43 and Cx32 have been associated with proliferation and migration at different stages of CNS development. Here, using molecular and cellular biology techniques (permeability), we demonstrate the expression and functionality of HCs-Cxs, including Cx46 and Cx32, which are associated with the release of ATP during the neurulation process in Xenopus laevis. Furthermore, applications of FGF2 and/or changes in intracellular redox potentials (DTT), well known HCs-Cxs modulators, transiently regulated the ATP release in our model. Importantly, the blockade of HCs-Cxs by carbenoxolone (CBX) and enoxolone (ENX) reduced ATP release with a concomitant formation of NTDs. We propose two possible and highly conserved binding sites (N and E) in Cx46 that may mediate the pharmacological effect of CBX and ENX on the formation of NTDs. In summary, our results highlight the importance of ATP release mediated by HCs-Cxs during neurulation.


Connexins , Neural Tube Defects , Animals , Connexins/metabolism , Neurulation , Gap Junctions/metabolism , Neural Tube/metabolism , Neural Tube Defects/metabolism , Adenosine Triphosphate/metabolism
20.
Dev Cell ; 58(1): 1-2, 2023 01 09.
Article En | MEDLINE | ID: mdl-36626868

To induce cell fate changes, do transcription factors engage open domains of chromatin or elicit chromatin opening in a pioneering fashion? In this issue of Developmental Cell, Delás et al. show that the same sonic hedgehog (Shh) inducing signal can yield different neural tube fates by either modality.


Hedgehog Proteins , Transcription Factors , Hedgehog Proteins/metabolism , Cell Differentiation , Transcription Factors/genetics , Transcription Factors/metabolism , Neural Tube/metabolism , Chromatin , Gene Expression Regulation, Developmental
...