Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.609
1.
Front Immunol ; 15: 1382931, 2024.
Article En | MEDLINE | ID: mdl-38736882

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Gangliosides , Killer Cells, Natural , Neuroblastoma , Tumor Escape , Tumor Microenvironment , Humans , Neuroblastoma/immunology , Neuroblastoma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Gangliosides/immunology , Gangliosides/metabolism , Tumor Microenvironment/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Tumor Cells, Cultured , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism
2.
Clin Transl Med ; 14(5): e1680, 2024 May.
Article En | MEDLINE | ID: mdl-38769668

BACKGROUND: A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS: Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS: c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS: These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.


Proto-Oncogene Proteins c-myc , Humans , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Aspartic Acid/metabolism , Malates/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neuroblastoma/metabolism , Neuroblastoma/genetics , Disease Progression , Transcriptional Activation/genetics , Cell Line, Tumor , Disease Models, Animal
3.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745192

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


N-Myc Proto-Oncogene Protein , Neuroblastoma , Tripartite Motif-Containing Protein 28 , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Tripartite Motif-Containing Protein 28/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Cell Line, Tumor , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Mice, Nude , Adenosine/analogs & derivatives , Adenosine/metabolism
4.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714539

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Hexokinase , Neuroblastoma , Tumor-Associated Macrophages , Neuroblastoma/metabolism , Neuroblastoma/pathology , Humans , Hexokinase/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Cell Proliferation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement , Chemokines, CXC/metabolism , Animals , Tumor Microenvironment/immunology
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732012

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
6.
Biol Pharm Bull ; 47(4): 796-800, 2024.
Article En | MEDLINE | ID: mdl-38583951

Previous reports indicated that zinc deficiency could increase the risk of infectious diseases and developmental retardation in children. In experimental study, it has been reported that zinc deficiency during the embryonic period inhibited fetal growth, and disturbed neural differentiation and higher brain function later in adulthood. Although it has been suggested that zinc deficiency during development can have significant effects on neuronal differentiation and maturation, the molecular mechanisms of the effects of low zinc on neuronal differentiation during development have not been elucidated in detail. This study was performed to determine the effects of low zinc status on neurite outgrowth and collapsin response mediator protein 2 (CRMP2) signal pathway. Low zinc suppressed neurite outgrowth, and caused increase levels of phosphorylated CRMP2 (pCRMP2) relative to CRMP2, and decrease levels of phosphorylated glycogen synthase kinase 3ß (pGSK3ß) relative to GSK3ß in human neuroblastoma cell line (SH-SY5Y) cells on days 1, 2, and 3 of neuronal differentiation induction. Neurite outgrowth inhibited by low zinc was restored by treatment with the GSK3ß inhibitor CHIR99021. These results suggested that low zinc causes neurite outgrowth inhibition via phosphorylation of CRMP2 by GSK3ß. In conclusion, this study is the first to demonstrate that CRMP signaling is involved in the suppression of neurite outgrowth by low zinc.


Neurites , Neuroblastoma , Child , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Neurites/metabolism , Neuroblastoma/metabolism , Phosphorylation , Signal Transduction , Zinc/metabolism
7.
PLoS One ; 19(4): e0298748, 2024.
Article En | MEDLINE | ID: mdl-38630734

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Neuroblastoma , Neurodegenerative Diseases , Mice , Humans , Animals , Histones/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Neuroblastoma/metabolism , Microglia/metabolism , Cells, Cultured , Neurodegenerative Diseases/metabolism
8.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653778

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
9.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653965

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Anaplastic Lymphoma Kinase , Dibenzocycloheptenes , Farnesyltranstransferase , GTP Phosphohydrolases , MicroRNAs , Neuroblastoma , Piperidines , Protein Kinase Inhibitors , Pyridines , Animals , Female , Humans , Mice , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Gene Expression Regulation, Neoplastic/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Xenograft Model Antitumor Assays
10.
Cancer Med ; 13(9): e7207, 2024 May.
Article En | MEDLINE | ID: mdl-38686627

BACKGROUND: Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS: We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 µM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS: There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION: DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.


Apoptosis , Cell Survival , Eflornithine , Neuroblastoma , Xenograft Model Antitumor Assays , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Humans , Animals , Cell Line, Tumor , Mice , Apoptosis/drug effects , Eflornithine/pharmacology , Eflornithine/therapeutic use , Cell Survival/drug effects , Carcinogenesis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
11.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605297

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Genes, myc , Neuroblastoma , Humans , 3-Phosphoinositide-Dependent Protein Kinases/genetics , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Cell Line, Tumor , Chromosome Segregation , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Neuroblastoma/metabolism
13.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677786

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Apoptosis , Leupeptins , NADPH Oxidase 5 , NADPH Oxidases , Neuroblastoma , Proteasome Inhibitors , Superoxides , Humans , Apoptosis/drug effects , Apoptosis/genetics , Proteasome Inhibitors/pharmacology , Superoxides/metabolism , Cell Line, Tumor , Neuroblastoma/pathology , Neuroblastoma/metabolism , Leupeptins/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Acetylcysteine/pharmacology , Neurons/metabolism , Neurons/drug effects
14.
Front Immunol ; 15: 1385875, 2024.
Article En | MEDLINE | ID: mdl-38660306

Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.


Biomarkers, Tumor , Disease Progression , Drug Resistance, Neoplasm , Extracellular Vesicles , Neuroblastoma , Humans , Neuroblastoma/therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Extracellular Vesicles/metabolism , Biomarkers, Tumor/metabolism , Animals
15.
Neoplasia ; 52: 100997, 2024 06.
Article En | MEDLINE | ID: mdl-38669760

Neurodevelopmental cell communication plays a crucial role in neuroblastoma prognosis. However, determining the impact of these communication pathways on prognosis is challenging due to limited sample sizes and patchy clinical survival information of single cell RNA-seq data. To address this, we have developed the cell communication pathway prognostic model (CCPPM) in this study. CCPPM involves the identification of communication pathways through single-cell RNA-seq data, screening of prognosis-significant pathways using bulk RNA-seq data, conducting functional and attribute analysis of these pathways, and analyzing the post-effects of communication within these pathways. By employing the CCPPM, we have identified ten communication pathways significantly influencing neuroblastoma, all related to axongenesis and neural projection development, especially the BMP7-(BMPR1B-ACVR2B) communication pathway was found to promote tumor cell migration by activating the transcription factor SMAD1 and regulating UNK and MYCBP2. Notably, BMP7 expression was higher in neuroblastoma samples with distant metastases. In summary, CCPPM offers a novel approach to studying the influence of cell communication pathways on disease prognosis and identified detrimental communication pathways related to neurodevelopment.


Cell Communication , Neuroblastoma , Signal Transduction , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/genetics , Humans , Prognosis , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , Computational Biology/methods , Cell Line, Tumor , Gene Expression Profiling , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Cell Movement
16.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38636893

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Animals , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Enhancer Elements, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Mice, Nude , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Prognosis
17.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38542297

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.


Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , alpha-Synuclein/metabolism , Cytosol/metabolism , G(M1) Ganglioside/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Parkinson Disease/metabolism
18.
Sci Rep ; 14(1): 7411, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548913

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.


Neuroblastoma , Tretinoin , Humans , Tretinoin/pharmacology , Tretinoin/metabolism , Floxuridine , Oxidative Phosphorylation , Cell Line, Tumor , Neuroblastoma/metabolism , Cell Differentiation
19.
J Cancer Res Clin Oncol ; 150(3): 148, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512513

INTRODUCTION: Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS: We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS: Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION: Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.


Machine Learning , Neuroblastoma , Humans , Prognosis , Risk Factors , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Neuroblastoma/metabolism , DNA , Tumor Microenvironment , Forkhead Transcription Factors/metabolism , Calcium-Binding Proteins , Trans-Activators/metabolism
20.
FEBS J ; 291(10): 2172-2190, 2024 May.
Article En | MEDLINE | ID: mdl-38431776

Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.


Kynurenine , Neuroblastoma , Receptors, Aryl Hydrocarbon , Humans , Kynurenine/metabolism , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Cell Line, Tumor , Tryptophan Oxygenase/metabolism , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/antagonists & inhibitors , Tretinoin/pharmacology , Signal Transduction/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects
...