Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 358
1.
Biosci Rep ; 44(4)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38577975

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Anti-Obesity Agents , Neuropeptides , Neuroprotective Agents , Obesity , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Obesity/drug therapy , Obesity/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Brain/drug effects , Brain/metabolism , Brain/pathology , Eating/drug effects
2.
Inflammopharmacology ; 32(2): 1519-1529, 2024 Apr.
Article En | MEDLINE | ID: mdl-38227096

AIMS: Putative beneficial effects of neuropeptide W (NPW) in the early phase of gastric ulcer healing process and the involvement of cyclooxygenase (COX) enzymes were investigated in an acetic acid-induced gastric ulcer model. MAIN METHODS: In anesthetized male Sprague-Dawley rats, acetic acid was applied surgically on the serosa and then a COX-inhibitor (COX-2-selective NS-398, COX-1-selective ketorolac, or non-selective indomethacin; 2 mg/kg/day, 3 mg/kg/day or 5 mg/kg/day; respectively) or saline was injected intraperitoneally. One h after ulcer induction, omeprazole (20 mg/kg/day), NPW (0.1 µg/kg/day) or saline was intraperitoneally administered. Injections of NPW, COX-inhibitors, omeprazole or saline were continued for the following 2 days until rats were decapitated at the end of the third day. KEY FINDINGS: NPW treatment depressed gastric prostaglandin (PG) I2 level, but not PGE2 level. Similar to omeprazole, NPW treatment significantly reduced gastric and serum tumor necrosis factor-alpha and interleukin-1 beta levels and depressed the upregulation of nuclear factor kappa B (NF-κB) and COX-2 expressions due to ulcer. In parallel with the histopathological findings, treatment with NPW suppressed ulcer-induced increases in myeloperoxidase activity and malondialdehyde level and replenished glutathione level. However, the inhibitory effect of NPW on myeloperoxidase activity and NPW-induced increase in glutathione were not observed in the presence of COX-1 inhibitor ketorolac or the non-selective COX-inhibitor indomethacin. SIGNIFICANCE: In conclusion, NPW facilitated the healing of gastric injury in rats via the inhibition of pro-inflammatory cytokine production, oxidative stress and neutrophil infiltration as well as the downregulation of COX-2 protein and NF-κB gene expressions.


Neuropeptides , Signal Transduction , Stomach Ulcer , Animals , Male , Rats , Acetates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/therapeutic use , Gastric Mucosa , Glutathione/metabolism , Indomethacin/therapeutic use , Ketorolac/adverse effects , Neuropeptides/therapeutic use , NF-kappa B/metabolism , Omeprazole/pharmacology , Omeprazole/therapeutic use , Peroxidase/metabolism , Rats, Sprague-Dawley , Stomach Ulcer/drug therapy , Ulcer/metabolism , Ulcer/pathology
3.
Digestion ; 105(1): 34-39, 2024.
Article En | MEDLINE | ID: mdl-37673052

BACKGROUND: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal symptoms, but its pathogenesis is not fully understood. SUMMARY: We have recently shown in rats that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve the intestinal barrier dysfunction, which is a major pathophysiology of IBS. We have additionally shown that the neuropeptides injected intracisternally induced a visceral antinociceptive action against colonic distension. Since it has been known that intestinal barrier dysfunction causes visceral hypersensitivity, the other main pathophysiology of IBS, the neuropeptides act centrally to reduce leaky gut, followed by improvement of visceral sensation, leading to therapeutic action on IBS. It has been recently reported that there is a bidirectional relationship between neuroinflammation in the brain and the pathophysiology of IBS. For example, activation of microglia in the brain causes visceral hypersensitivity. Accumulating evidence has suggested that orexin, ghrelin, or oxytocin could improve neuroinflammation in the CNS. All these results suggest that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve intestinal barrier function and visceral sensation and also induce a protective action against neuroinflammation in the brain. KEY MESSAGES: We therefore speculated that orexin, ghrelin, or oxytocin in the brain possess dual actions, improvement of visceral sensation/leaky gut in the gut, and reduction of neuroinflammation in the brain, thereby inducing a therapeutic effect on IBS in a convergent manner.


Irritable Bowel Syndrome , Neuropeptides , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/pathology , Orexins/pharmacology , Orexins/therapeutic use , Ghrelin/pharmacology , Ghrelin/therapeutic use , Oxytocin/therapeutic use , Oxytocin/pharmacology , Neuroinflammatory Diseases , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Brain/pathology
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article En | MEDLINE | ID: mdl-38003530

Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.


Neuropeptides , Osteoarthritis , Animals , Female , Rodentia , Pain/drug therapy , Osteoarthritis/pathology , Neuropeptides/therapeutic use , Analgesics/pharmacology
5.
Article Ru | MEDLINE | ID: mdl-37796066

The issues of effective treatment of neurological diseases remain relevant to this day. Neuropeptide preparations have been used in domestic neurological practice for more than 20 years. The physiological activity of neuropeptides is many times greater than that of non-peptide compounds. Neuropeptides include preparations from the brain of animals and synthetically synthesized analogues. The drugs differ from each other not only in composition, but also in different mechanisms of action, while maintaining the commonality of a pronounced neurotrophic and neuroreparative action. Large peptides and amino acids work on the principle of «replacement therapy¼, minipeptides affect the signaling system of the nuclear erythroid factor and bind to molecular targets, being bioregulators. The specific action of bioregulators is the ability to prolong their action and change the prevailing mechanism by reducing or increasing the required dose when physiologically necessary. They are called SMART-peptides, have high selectivity and efficiency, safety can potentiate the actions of other drugs.


Nervous System Diseases , Neuropeptides , Animals , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Peptides , Nervous System Diseases/drug therapy , Signal Transduction , Brain/metabolism
6.
Peptides ; 168: 171077, 2023 10.
Article En | MEDLINE | ID: mdl-37567254

INTRODUCTION: Myocardial infarction (MI) induces irreversible tissue damage, eventually leading to heart failure. Exogenous induction of angiogenesis positively influences ventricular remodeling after MI. Recently, we could show that therapeutic angiogenesis by the neuropeptide catestatin (CST) restores perfusion in the mouse hind limb ischemia model by the induction of angio-, arterio- and vasculogenesis. Thus, we assumed that CST might exert beneficial effects on cardiac cells. METHODS/RESULTS: To test the effect of CST on cardiac angiogenesis in-vitro matrigel assays with human coronary artery endothelial cells (HCAEC) were performed. CST significantly mediated capillary like tube formation comparable to vascular endothelial growth factor (VEGF), which was used as positive control. Interestingly, blockade of bFGF resulted in abrogation of observed effects. Moreover, CST induced proliferation of HCAEC and human coronary artery smooth muscle cells (HCASMC) as determined by BrdU-incorporation. Similar to the matrigel assay blockade of bFGF attenuated the effect. Consistent with these findings western blot assays revealed a bFGF-dependent phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 by CST in these cell lines. Finally, CST protected human cardiomyocytes in-vitro from apoptosis. CONCLUSION: CST might qualify as potential candidate for therapeutic angiogenesis in MI.


Myocardial Infarction , Neuropeptides , Humans , Coronary Vessels , Endothelial Cells/metabolism , Myocardial Infarction/drug therapy , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
7.
Pharmacol Res ; 195: 106875, 2023 09.
Article En | MEDLINE | ID: mdl-37517560

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Bulimia , Neuropeptides , Peptide Hormones , Animals , Feeding Behavior , Neuropeptides/therapeutic use , Obesity/drug therapy , Bulimia/drug therapy
8.
Int Immunopharmacol ; 121: 110488, 2023 Aug.
Article En | MEDLINE | ID: mdl-37352568

BACKGROUND: Sepsis is the major cause of death in intensive care units. We previously found that intermedin (IMD), a calcitonin family peptide, can protect against sepsis by dynamically repairing vascular endothelial junctions and can ameliorate the inflammatory response by inhibiting the infiltration of macrophages in peripheral tissues. The effects of IMD on inflammatory and immune responses indicate that IMD may play a role in immunity. However, whether IMD affects immune cell development, differentiation and response to infection remains unclear. METHODS: IMD-knockout (Adm2-/-) mice were generated in our previous work. Wild-type and IMD-KO mice were subjected to sham or cecal ligation and puncture (CLP) surgery, and bone marrow cells were obtained for RNA sequencing (RNA-Seq) analysis. The RNA-Seq results were verified by real-time RT-PCR. The effect of IMD KO or IMD rescue on the septic mice was explored using mild and severe infection models induced by CLP surgery at different levels of severity, and the survival outcomes were analyzed using Kaplan-Meier curves and the log-rank test. The mechanism underlying the effects of IMD in T/B cell proliferation and differentiation were investigated by PCR, Western blot (WB), and cell proliferation assays and flow cytometry analysis. RESULTS: RNA-Seq showed that IMD-KO mice exhibited a primary immunosuppression phenotype characterized by a marked decrease in the expression of T- and B-cell function-related genes. This immunosuppression made the IMD-KO mice vulnerable to pathogenic invasion, and even mild infection killed nearly half of the IMD-KO mice. Supplementation with the IMD peptide restored the expression of T/B-cell-related genes and significantly reduced the mortality rate of the IMD-KO mice. IMD is likely to directly promote T- and B-cell proliferation through ERK1/2 phosphorylation, stimulate T-cell differentiation via Ilr7/Rag1/2-controled T cell receptor (TCR) recombination, and activate B cells via Pax5, a transcription factor that activates at least 170 genes needed for B-cell functions. CONCLUSION: Together with previous findings, our results indicate that IMD may play a protective role in sepsis via three mechanisms: protecting the vascular endothelium, reducing the inflammatory response, and activating T/B-cell proliferation and differentiation. Our study may provide the first identification of IMD as a calcitonin peptide that plays an important role in the adaptive immune response by activating T/B cells and provides translational opportunities for the design of immunotherapies for sepsis and other diseases associated with primary immunodeficiency.


Neuropeptides , Peptide Hormones , Sepsis , Mice , Animals , Adrenomedullin/genetics , Adrenomedullin/therapeutic use , Adrenomedullin/metabolism , Calcitonin , Cell Proliferation , Neuropeptides/therapeutic use , Neuropeptides/genetics , Sepsis/pathology
9.
Adv Sci (Weinh) ; 10(21): e2300545, 2023 07.
Article En | MEDLINE | ID: mdl-37147783

Triple-negative breast cancer (TNBC) has the worst prognosis among all breast cancer subtypes due to lack of specific target sites and effective treatments. Herein, a transformable prodrug (DOX-P18) based on neuropeptide Y analogue with tumor microenvironment responsiveness is developed for TNBC treatment. The prodrug DOX-P18 can achieve reversible morphological transformation between monomers and nanoparticles through the manipulation of protonation degree in different environments. It can self-assemble into nanoparticles to enhance the circulation stability and drug delivery efficiency in the physiological environment while transforming from nanoparticles to monomers and being endocytosed into the breast cancer cells in the acidic tumor microenvironment. Further, the DOX-P18 can precisely be enriched in the mitochondria, and efficiently activated by matrix metalloproteinases. Then, the cytotoxic fragment (DOX-P3) can subsequently be diffused into the nucleus, generating a sustained cell toxicity effect. In the meanwhile, the hydrolysate residue P15 can assemble into nanofibers to construct nest-like barriers for the metastasis inhibition of cancer cells. After intravenous injection, the transformable prodrug DOX-P18 demonstrated superior tumor growth and metastasis suppression with much better biocompatibility and improved biodistribution compared to free DOX. As a novel tumor microenvironment-responsive transformable prodrug with diversified biological functions, DOX-P18 shows great potential in smart chemotherapeutics discovery for TBNC.


Neuropeptides , Prodrugs , Triple Negative Breast Neoplasms , Humans , Prodrugs/pharmacology , Prodrugs/therapeutic use , Prodrugs/chemistry , Triple Negative Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Tumor Microenvironment , Tissue Distribution , Neuropeptides/therapeutic use
10.
Mol Neurobiol ; 60(8): 4206-4231, 2023 Aug.
Article En | MEDLINE | ID: mdl-37052791

Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).


Neurodegenerative Diseases , Neuropeptides , Humans , Brain-Derived Neurotrophic Factor/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Neuropeptides/therapeutic use , Neuropeptides/metabolism , Signal Transduction/physiology
11.
Lab Invest ; 103(4): 100038, 2023 04.
Article En | MEDLINE | ID: mdl-36870288

Adrenomedullin 2 (AM2; also known as intermedin) is a member of the adrenomedullin (AM) peptide family. Similarly to AM, AM2 partakes in a variety of physiological activities. AM2 has been reported to exert protective effects on various organ disorders; however, its significance in the eye is unknown. We investigated the role of AM2 in ocular diseases. The receptor system of AM2 was expressed more abundantly in the choroid than in the retina. In an oxygen-induced retinopathy model, physiological and pathologic retinal angiogenesis did not differ between AM2-knockout (AM2-/-) and wild-type mice. In contrast, in laser-induced choroidal neovascularization, a model of neovascular age-related macular degeneration, AM2-/- mice had enlarged and leakier choroidal neovascularization lesions, with exacerbated subretinal fibrosis and macrophage infiltration. Contrary to this, exogenous administration of AM2 ameliorated the laser-induced choroidal neovascularization-associated pathology and suppressed gene expression associated with inflammation, fibrosis, and oxidative stress, including that of VEGF-A, VEGFR-2, CD68, CTGF, and p22-phox. The stimulation of human adult retinal pigment epithelial (ARPE) cell line 19 cells with TGF-ß2 and TNF-α induced epithelial-to-mesenchymal transition (EMT), whereas AM2 expression was also elevated. The induction of EMT was suppressed when the ARPE-19 cells were pretreated with AM2. A transcriptome analysis identified 15 genes, including mesenchyme homeobox 2 (Meox2), whose expression was significantly altered in the AM2-treated group compared with that in the control group. The expression of Meox2, a transcription factor that inhibits inflammation and fibrosis, was enhanced by AM2 treatment and attenuated by endogenous AM2 knockout in the early phase after laser irradiation. The AM2 treatment of endothelial cells inhibited endothelial to mesenchymal transition and NF-κB activation; however, this effect tended to be canceled following Meox2 gene knockdown. These results indicate that AM2 suppresses the neovascular age-related macular degeneration-related pathologies partially via the upregulation of Meox2. Thus, AM2 may be a promising therapeutic target for ocular vascular diseases.


Choroidal Neovascularization , Macular Degeneration , Neuropeptides , Humans , Mice , Animals , Adrenomedullin/genetics , Adrenomedullin/pharmacology , Adrenomedullin/therapeutic use , Endothelial Cells/metabolism , Choroidal Neovascularization/genetics , Choroidal Neovascularization/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Inflammation/pathology , Fibrosis , Neuropeptides/therapeutic use
12.
J Alzheimers Dis ; 92(4): 1413-1426, 2023.
Article En | MEDLINE | ID: mdl-36911940

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-ß peptide (Aß) deposition. Aß accumulation induces oxidative stress, leading to mitochondrial dysfunction, apoptosis, and so forth. Octadecaneuropeptide (ODN), a diazepam-binding inhibitor (DBI)-derived peptide, has been reported to have antioxidant properties. However, it is unclear whether ODN has neuroprotective effects in AD. OBJECTIVE: To profile the potential effects of ODN on AD. METHODS: We established a mouse model of AD via microinjection of Aß in the lateral ventricle. Utilizing a combination of western blotting assays, electrophysiological recordings, and behavioral tests, we investigated the neuroprotective effects of ODN on AD. RESULTS: DBI expression was decreased in AD model mice and cells. Meanwhile, ODN decreased Aß generation by downregulating amyloidogenic AßPP processing in HEK-293 cells stably expressing human Swedish mutant APP695 and BACE1 (2EB2). Moreover, ODN could inhibit Aß-induced oxidative stress in primary cultured cells and mice, as reflected by a dramatic increase in antioxidants and a decrease in pro-oxidants. We also found that ODN could reduce oxidative stress-induced apoptosis by restoring mitochondrial membrane potential, intracellular Ca2+ and cleaved caspase-3 levels in Aß-treated primary cultured cells and mice. More importantly, intracerebroventricular injection of ODN attenuated cognitive impairments as well as long-term potentiation in Aß-treated mice. CONCLUSION: These results suggest that ODN may exert a potent neuroprotective effect against Aß-induced neurotoxicity and memory decline via its antioxidant effects, indicating that ODN may be a potential therapeutic agent for AD.


Alzheimer Disease , Brain , Cognitive Dysfunction , Diazepam Binding Inhibitor , Neuropeptides , Neuroprotective Agents , Oxidative Stress , Peptide Fragments , Animals , Humans , Mice , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , CA1 Region, Hippocampal/drug effects , Cells, Cultured , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Diazepam Binding Inhibitor/pharmacology , Diazepam Binding Inhibitor/therapeutic use , Disease Models, Animal , HEK293 Cells , Long-Term Potentiation/drug effects , Membrane Potential, Mitochondrial/drug effects , Memory/drug effects , Mice, Inbred C57BL , Neurons/drug effects , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use
13.
Trends Mol Med ; 29(1): 61-69, 2023 Jan.
Article En | MEDLINE | ID: mdl-36400667

Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.


Narcolepsy , Humans , Intracellular Signaling Peptides and Proteins , Narcolepsy/diagnosis , Narcolepsy/drug therapy , Narcolepsy/genetics , Neuropeptides/therapeutic use , Orexin Receptors/therapeutic use , Orexins/genetics
14.
Int J Infect Dis ; 125: 103-113, 2022 Dec.
Article En | MEDLINE | ID: mdl-36241161

OBJECTIVES: Bacterial pneumonia is a common serious infectious disease with high morbidity and mortality. Prokineticin 2 (PK2) has recently been identified as a novel immunomodulator in a variety of diseases; however, its role in bacterial pneumonia remains unclear. METHODS: The levels of PK2 were measured and analyzed in patients with pneumonia and healthy controls. The effects of PK2 on the host response to pneumonia were evaluated by in vivo animal experiments and in vitro cell experiments. RESULTS: PK2 levels dramatically decreased in patients with pneumonia compared with healthy controls, and PK2 levels were lower in patients with severe pneumonia than in pneumonia. In a mouse model of bacterial pneumonia, transtracheal administration of recombinant PK2 significantly alleviated lung injury and improved the survival, which was associated with increased host's bacterial clearance capacity, as manifested by decreased pulmonary bacterial loads. PK2 enhanced the chemotaxis, phagocytosis, and killing ability of macrophages, whereas the protective efficacy of PK2 was abolished after macrophage depletion. CONCLUSION: Impaired alveolar macrophage function caused by decreased PK2 is a new endogenous cause of the occurrence and development of bacterial pneumonia. The administration of recombinant PK2 may be a potential adjuvant therapy for bacterial pneumonia.


Gastrointestinal Hormones , Neuropeptides , Pneumonia, Bacterial , Mice , Animals , Neuropeptides/therapeutic use , Macrophages , Pneumonia, Bacterial/drug therapy , Anti-Bacterial Agents
15.
Diabetes Obes Metab ; 24(12): 2353-2363, 2022 12.
Article En | MEDLINE | ID: mdl-35848461

AIM: To examine whether sequential administration of (d-Arg35 )-sea lamprey peptide tyrosine tyrosine (1-36) (SL-PYY) and the glucagon-like peptide-1 (GLP-1) mimetic, liraglutide, has beneficial effects in diabetes. METHODS: SL-PYY is an enzymatically stable neuropeptide Y1 receptor (NPY1R) agonist known to induce pancreatic beta-cell rest and improve overall beta-cell health. We employed SL-PYY and liraglutide to induce appropriate recurrent periods of beta-cell rest and stimulation, to assess therapeutic benefits in high fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. RESULTS: Previous studies confirm that, at a dose of 0.25 nmol/kg, liraglutide exerts bioactivity over an 8-12 hour period in mice. Initial pharmacokinetic analysis revealed that 75 nmol/kg SL-PYY yielded a similar plasma drug time profile. When SL-PYY (75 nmol/kg) and liraglutide (0.25 nmol/kg) were administered sequentially at 08:00 AM and 08:00 PM, respectively, to HFF-STZ mice for 28 days, reductions in energy intake, body weight, circulating glucose, insulin and glucagon were noted. Similarly positive, but slightly less striking, effects were also apparent with twice-daily liraglutide-only therapy. The sequential SL-PYY and liraglutide treatment also improved insulin sensitivity and glucose-induced insulin secretory responses, which was not apparent with liraglutide treatment, although benefits on glucose tolerance were mild. Interestingly, combined therapy also elevated pancreatic insulin, decreased pancreatic glucagon and enhanced the plasma insulin/glucagon ratio compared with liraglutide alone. This was not associated with an enhancement of beneficial changes in islet cell areas, proliferation or apoptosis compared with liraglutide alone, but the numbers of centrally stained glucagon-positive islet cells were reduced by sequential combination therapy. CONCLUSION: These data show that NPY1R-induced intervals of beta-cell rest, combined with GLP-1R-stimulated periods of beta-cell stimulation, should be further evaluated as an effective treatment option for obesity-driven forms of diabetes.


Diabetes Mellitus, Experimental , Neuropeptides , Animals , Mice , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use , Glucose/therapeutic use , Insulin/therapeutic use , Liraglutide/pharmacology , Liraglutide/therapeutic use , Neuropeptides/therapeutic use , Peptide YY/metabolism , Streptozocin/therapeutic use , Tyrosine/therapeutic use , Neuropeptide Y/pharmacology
16.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article En | MEDLINE | ID: mdl-35562956

Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.


Neuropeptides , Parkinson Disease , Dopaminergic Neurons/metabolism , Humans , Inflammation/pathology , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Neuroprotection , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
17.
Biomed Pharmacother ; 151: 113099, 2022 Jul.
Article En | MEDLINE | ID: mdl-35594706

Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.


Nervous System Diseases , Neuropeptides , Animals , Biomarkers/metabolism , Nerve Growth Factors/metabolism , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Neuropeptides/metabolism , Neuropeptides/therapeutic use , Neurosecretory Systems , Prospective Studies , Rats
18.
Trials ; 23(1): 340, 2022 Apr 23.
Article En | MEDLINE | ID: mdl-35461285

BACKGROUND: Traumatic brain injury (TBI) constitutes a global epidemic. Overall outcome is poor, with mortality ranging from 10 to 70% and significant long-term morbidity. Several experimental reports have claimed effect on traumatic edema, but no clinical trials have shown effect on edema or outcome. Antisecretory factor, an endogenous protein, is commercially available as Salovum®, which is classified as a medical food by the European Union and has shown effect in experimental trauma models and feasibility with signs of effect in 2 pilot case series. The aim of this study is to assess the effect of antisecretory factor in adult patients with severe traumatic brain injury as measured by 30-day mortality, treatment intensity level (TIL), and intracranial pressure (ICP). METHODS/DESIGN: This is a single-center, double-blind, randomized, placebo-controlled clinical phase 2 trial, investigating the clinical superiority of Salovum® given as a food supplement to adults with severe TBI (GCS < 9), presenting to the trauma unit at Tygerberg University Hospital, Cape Town, South Africa, that are planned for invasive ICP monitoring and neurointensive care, will be screened for eligibility, and assigned to either treatment group (n = 50) or placebo group (n = 50). In both groups, the primary outcome will be 30-day mortality, recorded via hospital charts, follow-up phone calls, and the population registry. Secondary outcomes will be treatment intensity level (TIL), scored from hospital charts, and ICP registered from hospital data monitoring. TRIAL REGISTRATION: ClinicalTrials.gov NCT03339505 . Registered on September 17, 2017. Protocol version 3.0 from November 13, 2020.


Brain Injuries, Traumatic , Neuropeptides , Adult , Brain Injuries, Traumatic/drug therapy , Clinical Trials, Phase II as Topic , Dietary Supplements , Humans , Neuropeptides/therapeutic use , Randomized Controlled Trials as Topic , South Africa
19.
J Med Food ; 25(4): 389-401, 2022 Apr.
Article En | MEDLINE | ID: mdl-35438553

Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.


Colitis, Ulcerative , Neuropeptides , Acetic Acid/adverse effects , Acetic Acid/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Cytokines/metabolism , Ghrelin/metabolism , Interleukin-10/metabolism , Interleukin-8/metabolism , Matrix Metalloproteinase 9/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Rats , Reactive Oxygen Species/metabolism , Serotonin/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35054936

Wound healing is a highly coordinated process which leads to the repair and regeneration of damaged tissue. Still, numerous diseases such as diabetes, venous insufficiencies or autoimmune diseases could disturb proper wound healing and lead to chronic and non-healing wounds, which are still a great challenge for medicine. For many years, research has been carried out on finding new therapeutics which improve the healing of chronic wounds. One of the most extensively studied active substances that has been widely tested in the treatment of different types of wounds was Substance P (SP). SP is one of the main neuropeptides released by nervous fibers in responses to injury. This review provides a thorough overview of the application of SP in different types of wound models and assesses its efficacy in wound healing.


Regeneration/drug effects , Substance P/pharmacology , Animals , Drug Administration Routes , Drug Compounding , Humans , Models, Animal , Neuropeptides/chemistry , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Organ Specificity/drug effects , Substance P/chemistry , Substance P/therapeutic use , Wound Healing/drug effects
...