Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.494
Filtrar
1.
J Basic Microbiol ; 64(7): e2400049, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715338

RESUMEN

Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.


Asunto(s)
Bioprospección , Celulasa , Endófitos , Fermentación , Lacasa , Endófitos/aislamiento & purificación , Endófitos/enzimología , Endófitos/metabolismo , Endófitos/genética , Lacasa/metabolismo , Lacasa/biosíntesis , Celulasa/metabolismo , Celulasa/biosíntesis , Amilasas/metabolismo , Aspergillus niger/aislamiento & purificación , Aspergillus niger/enzimología , México , Neurospora , Hongos/aislamiento & purificación , Hongos/enzimología , Hongos/clasificación , Hongos/genética
2.
J Sci Food Agric ; 104(10): 6186-6195, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38459923

RESUMEN

BACKGROUND: Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS: After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, ß-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION: Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.


Asunto(s)
Catecol Oxidasa , Fermentación , Polifenoles , Saccharomyces cerevisiae , Sorghum , Sorghum/química , Sorghum/metabolismo , Polifenoles/metabolismo , Polifenoles/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Catecol Oxidasa/metabolismo , Rhizopus/metabolismo , Rhizopus/enzimología , Taninos/metabolismo , Taninos/análisis , Taninos/química , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimología , Celulasa/metabolismo , Celulasa/química , Neurospora/metabolismo , Manipulación de Alimentos/métodos , beta-Glucosidasa/metabolismo , Semillas/química , Semillas/metabolismo , Semillas/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Fenoles/metabolismo , Fenoles/química , Fenoles/análisis
3.
Phytochemistry ; 219: 113963, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171409

RESUMEN

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Asunto(s)
Neurospora , Pseudotsuga , Tracheophyta , Xantonas , Staphylococcus aureus , Hongos , Xantonas/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana
4.
Genetics ; 226(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38124387

RESUMEN

Genes regulating recombination in specific chromosomal intervals of Neurospora crassa were described in the 1960s, but the mechanism is still unknown. For each of the rec-1, rec-2, and rec-3 genes, a single copy of the putative dominant allele, for example, rec-2SL found in St Lawrence OR74 A wild type, reduces recombination in chromosomal regions specific to that gene. However, when we sequenced the recessive allele, rec-2LG (derived from the Lindegren 1A wild type), we found that a 10 kb region in rec-2SL strains was replaced by a 2.7 kb unrelated sequence, making the "alleles" idiomorphs. When we introduced sad-1, a mutant lacking the RNA-dependent RNA polymerase that silences unpaired coding regions during meiosis into crosses heterozygous rec-2SL/rec-2LG, it increased recombination, indicating that meiotic silencing of a gene promoting recombination is responsible for dominant suppression of recombination. Consistent with this, mutation of rec-2LG by Repeat-Induced Point mutation generated an allele with multiple stop codons in the predicted rec-2 gene, which does not promote recombination and is recessive to rec-2LG. Sad-1 also relieves suppression of recombination in relevant target regions, in crosses heterozygous for rec-1 alleles and in crosses heterozygous for rec-3 alleles. We conclude that for all 3 known rec genes, 1 allele appears dominant only because meiotic silencing prevents the product of the active, "recessive," allele from stimulating recombination during meiosis. In addition, the proposed amino acid sequence of REC-2 suggests that regulation of recombination in Neurospora differs from any currently known mechanism.


Asunto(s)
Neurospora crassa , Neurospora , Neurospora crassa/genética , Neurospora/genética , Mutación , Mutación Puntual , Heterocigoto , Recombinación Genética , Meiosis
5.
PLoS Genet ; 19(11): e1011019, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934795

RESUMEN

Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.


Asunto(s)
Neurospora crassa , Neurospora , Neurospora/genética , Genes Fúngicos , Neurospora crassa/genética , Fenotipo , Perfilación de la Expresión Génica , Reproducción/genética , Proteínas Fúngicas/genética
6.
PLoS Genet ; 19(10): e1010985, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37844074

RESUMEN

UPF-1-UPF-2-UPF-3 complex-orchestrated nonsense-mediated mRNA decay (NMD) is a well-characterized eukaryotic cellular surveillance mechanism that not only degrades aberrant transcripts to protect the integrity of the transcriptome but also eliminates normal transcripts to facilitate appropriate cellular responses to physiological and environmental changes. Here, we describe the multifaceted regulatory roles of the Neurospora crassa UPF complex in catalase-3 (cat-3) gene expression, which is essential for scavenging H2O2-induced oxidative stress. First, losing UPF proteins markedly slowed down the decay rate of cat-3 mRNA. Second, UPF proteins indirectly attenuated the transcriptional activity of cat-3 gene by boosting the decay of cpc-1 and ngf-1 mRNAs, which encode a well-studied transcription factor and a histone acetyltransferase, respectively. Further study showed that under oxidative stress condition, UPF proteins were degraded, followed by increased CPC-1 and NGF-1 activity, finally activating cat-3 expression to resist oxidative stress. Together, our data illustrate a sophisticated regulatory network of the cat-3 gene mediated by the UPF complex under physiological and H2O2-induced oxidative stress conditions.


Asunto(s)
Peróxido de Hidrógeno , Neurospora , Peróxido de Hidrógeno/farmacología , Catalasa/genética , Degradación de ARNm Mediada por Codón sin Sentido , Estrés Oxidativo/genética
7.
Sci Adv ; 9(26): eadh0721, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390199

RESUMEN

RNA polymerase II initiates transcription either randomly or in bursts. We examined the light-dependent transcriptional activator White Collar Complex (WCC) of Neurospora to characterize the transcriptional dynamics of the strong vivid (vvd) promoter and the weaker frequency (frq) promoter. We show that WCC is not only an activator but also represses transcription by recruiting histone deacetylase 3 (HDA3). Our data suggest that bursts of frq transcription are governed by a long-lived refractory state established and maintained by WCC and HDA3 at the core promoter, whereas transcription of vvd is determined by WCC binding dynamics at an upstream activating sequence. Thus, in addition to stochastic binding of transcription factors, transcription factor-mediated repression may also influence transcriptional bursting.


Asunto(s)
Neurospora , Neurospora/genética , Histona Desacetilasas/genética , Factores de Transcripción/genética , Expresión Génica
8.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37313736

RESUMEN

A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.


Asunto(s)
Neurospora crassa , Neurospora , Neurospora crassa/genética , Neurospora crassa/metabolismo , Genes Fúngicos , Tolerancia , Fenotipo , Células Gigantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética
9.
Mol Plant ; 16(6): 1066-1081, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198885

RESUMEN

Vitamin A deficiency remains a severe global health issue, which creates a need to biofortify crops with provitamin A carotenoids (PACs). Expanding plant cell capacity for synthesis and storing of PACs outside the plastids is a promising biofortification strategy that has been little explored. Here, we engineered PAC formation and sequestration in the cytosol of Nicotiana benthamiana leaves, Arabidopsis seeds, and citrus callus cells, using a fungal (Neurospora crassa) carotenoid pathway that consists of only three enzymes converting C5 isopentenyl building blocks formed from mevalonic acid into PACs, including ß-carotene. This strategy led to the accumulation of significant amounts of phytoene and γ- and ß-carotene, in addition to fungal, health-promoting carotenes with 13 conjugated double bonds, such as the PAC torulene, in the cytosol. Increasing the isopentenyl diphosphate pool by adding a truncated Arabidopsis hydroxymethylglutaryl-coenzyme A reductase substantially increased cytosolic carotene production. Engineered carotenes accumulate in cytosolic lipid droplets (CLDs), which represent a novel sequestering sink for storing these pigments in plant cytosol. Importantly, ß-carotene accumulated in the cytosol of citrus callus cells was more light stable compared to compared with plastidial ß-carotene. Moreover, engineering cytosolic carotene formation increased the number of large-sized CLDs and the levels of ß-apocarotenoids, including retinal, the aldehyde corresponding to vitamin A. Collectively, our study opens up the possibility of exploiting the high-flux mevalonic acid pathway for PAC biosynthesis and enhancing carotenoid sink capacity in green and non-green plant tissues, especially in lipid-storing seeds, and thus paves the way for further optimization of carotenoid biofortification in crops.


Asunto(s)
Arabidopsis , Neurospora , beta Caroteno , Provitaminas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Gotas Lipídicas/metabolismo , Neurospora/metabolismo , Ácido Mevalónico/metabolismo , Carotenoides/metabolismo
10.
Perit Dial Int ; 43(5): 417-420, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37131324

RESUMEN

We describe a rare case of fungal peritoneal dialysis (PD) peritonitis caused by the ascomycete fungus Neurospora sitophila (N. sitophila). The patient had little response to initial antibiotics and PD catheter removal was necessary for source control. The fungal biomarker ß-d-glucan (BDG) was positive prior to N. sitophila being cultured and remained positive for 6 months after discharge. Use of BDG early in the assessment of PD peritonitis may reduce time to definitive therapy in fungal peritonitis.


Asunto(s)
Micosis , Neurospora , Diálisis Peritoneal , Peritonitis , Humanos , Diálisis Peritoneal/efectos adversos , Peritonitis/diagnóstico , Peritonitis/tratamiento farmacológico , Peritonitis/etiología , Biomarcadores , Tolnaftato
11.
Rev. chil. infectol ; 40(2): 167-168, abr. 2023. ilus
Artículo en Español | LILACS | ID: biblio-1441405

Asunto(s)
Neurospora
12.
J Genet ; 1012022.
Artículo en Inglés | MEDLINE | ID: mdl-36330790

RESUMEN

Genome resequencing is an efficient strategy for associating mutant phenotypes with physical genomic loci (Baker 2009). A pilot study of this approach demonstrated that the Neurospora crassa genetic map was critical in narrowing the possible candidate mutations in a strain to a small number in a limited, defined region of the genome (McCluskey et al. 2011). In this study, we utilize a resequencing strategy to identify the mutations underlying the gluc-1 and gluc-2 genes in N. crassa.


Asunto(s)
Neurospora crassa , Neurospora , Neurospora crassa/genética , Proyectos Piloto , Mutación , Análisis de Secuencia de ADN , Fenotipo , Neurospora/genética
13.
Evolution ; 76(11): 2687-2696, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148939

RESUMEN

Evolution of Bateson-Dobzhansky-Muller (BDM) incompatibilities is thought to represent a key step in the formation of separate species. They are incompatible alleles that have evolved in separate populations and are exposed in hybrid offspring as hybrid sterility or lethality. In this study, we reveal a previously unconsidered mechanism promoting the formation of BDM incompatibilities, meiotic drive. Theoretical studies have evaluated the role that meiotic drive, the phenomenon whereby selfish elements bias their transmission to progeny at ratios above 50:50, plays in speciation, and have mostly concluded that drive could not result in speciation on its own. Using the model fungus Neurospora, we demonstrate that the large meiotic drive haplotypes, Sk-2 and Sk-3, contain putative sexual incompatibilities. Our experiments revealed that although crosses between Neurospora intermedia and Neurospora metzenbergii produce viable progeny at appreciable rates, when strains of N. intermedia carry Sk-2 or Sk-3 the proportion of viable progeny drops substantially. Additionally, it appears that Sk-2 and Sk-3 have accumulated different incompatibility phenotypes, consistent with their independent evolutionary history. This research illustrates how meiotic drive can contribute to reproductive isolation between populations, and thereby speciation.


Asunto(s)
Neurospora , Neurospora/genética , Aislamiento Reproductivo , Alelos , Fenotipo
14.
Annu Rev Microbiol ; 76: 305-323, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075094

RESUMEN

Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.


Asunto(s)
Neurospora , Schizosaccharomyces , Genes Fúngicos , Meiosis , Neurospora/genética , Schizosaccharomyces/genética , Esporas Fúngicas/genética
15.
Proc Biol Sci ; 289(1980): 20220971, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946150

RESUMEN

Heterokaryosis is a system in which genetically distinct nuclei coexist within the same cytoplasm. While heterokaryosis dominates the life cycle of many fungal species, the transcriptomic changes associated with the transition from homokaryosis to heterokaryosis is not well understood. Here, we analyse gene expression profiles of homokaryons and heterokaryons from three phylogenetically and reproductively isolated lineages of the filamentous ascomycete Neurospora tetrasperma. We show that heterokaryons are transcriptionally distinct from homokaryons in the sexual stage of development, but not in the vegetative stage, suggesting that the phenotypic switch to fertility in heterokaryons is associated with major changes in gene expression. Heterokaryon expression is predominantly defined by additive effects of its two nuclear components. Furthermore, allele-specific expression analysis of heterokaryons with varying nuclear ratios show patterns of expression ratios strongly dependent on nuclear ratios in the vegetative stage. By contrast, in the sexual stage, strong deviations of expression ratios indicate a co-regulation of nuclear gene expression in all three lineages. Taken together, our results show two levels of expression control: additive effects suggest a nuclear level of expression, whereas co-regulation of gene expression indicate a heterokaryon level of control.


Asunto(s)
Neurospora , Alelos , Núcleo Celular/genética , Expresión Génica , Neurospora/genética
16.
Proc Natl Acad Sci U S A ; 119(34): e2203563119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35976881

RESUMEN

The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal clock driving circadian rhythms of physiology and behavior that adapt mammals to environmental cycles. Disruption of SCN-dependent rhythms compromises health, and so understanding SCN time keeping will inform management of diseases associated with modern lifestyles. SCN time keeping is a self-sustaining transcriptional/translational delayed feedback loop (TTFL), whereby negative regulators inhibit their own transcription. Formally, the SCN clock is viewed as a limit-cycle oscillator, the simplest being a trajectory of successive phases that progresses through two-dimensional space defined by two state variables mapped along their respective axes. The TTFL motif is readily compatible with limit-cycle models, and in Neurospora and Drosophila the negative regulators Frequency (FRQ) and Period (Per) have been identified as state variables of their respective TTFLs. The identity of state variables of the SCN oscillator is, however, less clear. Experimental identification of state variables requires reversible and temporally specific control over their abundance. Translational switching (ts) provides this, the expression of a protein of interest relying on the provision of a noncanonical amino acid. We show that the negative regulator Cryptochrome 1 (CRY1) fulfills criteria defining a state variable: ts-CRY1 dose-dependently and reversibly suppresses the baseline, amplitude, and period of SCN rhythms, and its acute withdrawal releases the TTFL to oscillate from a defined phase. Its effect also depends on its temporal pattern of expression, although constitutive ts-CRY1 sustained (albeit less stable) oscillations. We conclude that CRY1 has properties of a state variable, but may operate among several state variables within a multidimensional limit cycle.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Criptocromos , Transporte de Proteínas , Núcleo Supraquiasmático , Animales , Criptocromos/metabolismo , Drosophila melanogaster , Neurospora , Núcleo Supraquiasmático/metabolismo
17.
FEBS Lett ; 596(15): 1881-1891, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35735764

RESUMEN

Timing by the circadian clock of Neurospora is associated with hyperphosphorylation of frequency (FRQ), which depends on anchoring casein kinase 1a (CK1a) to FRQ. It is not known how CK1a is anchored so that approximately 100 sites in FRQ can be targeted. Here, we identified two regions in CK1a, p1 and p2, that are required for anchoring to FRQ. Mutation of p1 or p2 impairs progressive hyperphosphorylation of FRQ. A p1-mutated strain is viable but its circadian clock is non-functional, whereas a p2-mutated strain is non-viable. Our data suggest that p1 and potentially also p2 in CK1a provide an interface for interaction with FRQ. Anchoring via p1-p2 leaves the active site of CK1a accessible for phosphorylation of FRQ at multiple sites.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Neurospora , Caseína Quinasas/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética , Neurospora/metabolismo , Neurospora crassa/genética
18.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293585

RESUMEN

Neurospora crassa propagates through dissemination of conidia, which develop through specialized structures called conidiophores. Recent work has identified striking variation in conidiophore morphology, using a wild population collection from Louisiana, United States of America to classify 3 distinct phenotypes: Wild-Type, Wrap, and Bulky. Little is known about the impact of these phenotypes on sporulation or germination later in the N. crassa life cycle, or about the genetic variation that underlies them. In this study, we show that conidiophore morphology likely affects colonization capacity of wild N. crassa isolates through both sporulation distance and germination on different carbon sources. We generated and crossed homokaryotic strains belonging to each phenotypic group to more robustly fit a model for and estimate heritability of the complex trait, conidiophore architecture. Our fitted model suggests at least 3 genes and 2 epistatic interactions contribute to conidiophore phenotype, which has an estimated heritability of 0.47. To uncover genes contributing to these phenotypes, we performed RNA-sequencing on mycelia and conidiophores of strains representing each of the 3 phenotypes. Our results show that the Bulky strain had a distinct transcriptional profile from that of Wild-Type and Wrap, exhibiting differential expression patterns in clock-controlled genes (ccgs), the conidiation-specific gene con-6, and genes implicated in metabolism and communication. Combined, these results present novel ecological impacts of and differential gene expression underlying natural conidiophore morphological variation, a complex trait that has not yet been thoroughly explored.


Asunto(s)
Neurospora crassa , Neurospora , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , Neurospora/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fenómica , Esporas Fúngicas/genética , Transcriptoma
19.
Sci Total Environ ; 802: 149961, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525702

RESUMEN

Recent attempts have been made to develop a thermophilic composting process for organic sludge to not only produce organic fertilizers and soil conditioners, but to also utilize the generated ammonia gas to produce high value-added algae. The hydrolysis of organic nitrogen in sludge is a bottleneck in ammonia conversion, and its improvement is a major challenge. The present study aimed to elucidate the effects of inoculated Neurospora sp. on organic matter decomposition and ammonia conversion during thermophilic composting of two organic sludge types: anaerobic digestion sludge and shrimp pond sludge. A laboratory-scale sludge composting experiment was conducted with a 6-day pretreatment period at 30 °C with Neurospora sp., followed by a 10-day thermophilic composting period at 50 °C by inoculating the bacterial community. The final organic matter decomposition was significantly higher in the sludge pretreated with Neurospora sp. than in the untreated sludge. Correspondingly, the amount of non-dissolved nitrogen was also markedly reduced by pretreatment, and the ammonia conversion rate was notably improved. Five enzymes exhibiting high activity only during the pretreatment period were identified, while no or low activity was observed during the subsequent thermophilic composting period, suggesting the involvement of these enzymes in the degradation of hardly degradable fractions, such as bacterial cells. The bacterial community analysis and its function prediction suggested the contribution of Bacillaceae in the degradation of easily degradable organic matter, but the entire bacterial community was highly incapable in degrading the hardly degradable fraction. To conclude, this study is the first to demonstrate that Neurospora sp. decomposes those organic nitrogen fractions that require a long time to be decomposed by the bacterial community during thermophilic composting.


Asunto(s)
Compostaje , Neurospora , Amoníaco , Nitrógeno , Aguas del Alcantarillado , Suelo
20.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815343

RESUMEN

Ribosomes translate RNA into proteins. The protein synthesis inhibitor cycloheximide (CHX) is widely used to inhibit eukaryotic ribosomes engaged in translation elongation. However, the lack of structural data for actively translating polyribosomes stalled by CHX leaves unanswered the question of which elongation step is inhibited. We elucidated CHX's mechanism of action based on the cryo-electron microscopy structure of actively translating Neurospora crassa ribosomes bound with CHX at 2.7-Å resolution. The ribosome structure from this filamentous fungus contains clearly resolved ribosomal protein eL28, like higher eukaryotes but unlike budding yeast, which lacks eL28. Despite some differences in overall structures, the ribosomes from Neurospora, yeast, and humans all contain a highly conserved CHX binding site. We also sequenced classic Neurospora CHX-resistant alleles. These mutations, including one at a residue not previously observed to affect CHX resistance in eukaryotes, were in the large subunit proteins uL15 and eL42 that are part of the CHX-binding pocket. In addition to A-site transfer RNA (tRNA), P-site tRNA, messenger RNA, and CHX that are associated with the translating N. crassa ribosome, spermidine is present near the CHX binding site close to the E site on the large subunit. The tRNAs in the peptidyl transferase center are in the A/A site and the P/P site. The nascent peptide is attached to the A-site tRNA and not to the P-site tRNA. The structural and functional data obtained show that CHX arrests the ribosome in the classical PRE translocation state and does not interfere with A-site reactivity.


Asunto(s)
Cicloheximida/farmacología , Neurospora/fisiología , Ribosomas/metabolismo , Alelos , Sitios de Unión , Secuencia Conservada , Microscopía por Crioelectrón , Hongos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Conformación Molecular , Mutación , Neurospora crassa/metabolismo , Extensión de la Cadena Peptídica de Translación , Péptidos/química , Peptidil Transferasas/química , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína , ARN de Transferencia/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA