Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.200
1.
Folia Neuropathol ; 62(1): 1-12, 2024.
Article En | MEDLINE | ID: mdl-38741432

Polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) are dominant environmental and food contaminants. Tetrabromobisphenol A (TBBPA) is the most widely used BFR in the world to improve the fire safety of laminates in electrical and electronic equipment. Aroclor 1254, one of the PCBs, is widely distributed in the environment due to its extensive use in industrial applications around the world. Both groups of substances are potent toxicants. There is also increasing evidence that they have neurotoxic effects. In this study we tested the pro-inflammatory effects of Aroclor 1254 and TBBPA based on markers of microglial reactivity and levels of pro-inflammatory factors in the brain of immature rats. Aroclor 1254 or TBBPA were administered to the rats by oral gavage for two weeks at a dose of 10 mg/kg b.w. Both light and electron microscopy studies revealed features indicative of microglia activation in brains of exposed rats. Morphological changes were associated with overexpression of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Analysis of cytokine/chemokine array revealed significant secretion of inflammatory mediators following exposure to both TBBPA and Aroclor 1254, which was stronger in the cerebellum than in the forebrain of exposed immature rats. The results indicate a pro-inflammatory profile of microglia activation as one of the neurotoxic mechanisms of both examined toxicants.


Microglia , Neurotoxicity Syndromes , Polybrominated Biphenyls , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Polybrominated Biphenyls/toxicity , Rats , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Brain/drug effects , Brain/pathology , Brain/metabolism , Male , Flame Retardants/toxicity , Rats, Wistar
2.
Front Immunol ; 15: 1380451, 2024.
Article En | MEDLINE | ID: mdl-38765003

Corticosteroid therapy is the mainstay of immune effector cell-associated neurotoxicity syndrome (ICANS) management, although its use has been associated with worse overall survival (OS) and progression-free survival (PFS) after chimeric antigen receptor T-cell (CAR-T cell) therapy. Many options are being investigated for prophylaxis and management. Accumulating evidence supports the use of intrathecal (IT) chemotherapy for the management of high-grade ICANS. Here, we describe a case of a patient with stage IV Primary mediastinal B-cell lymphoma (PMBCL) successfully treated with IT methotrexate, cytarabine, and dexamethasone as first-line therapy for CD19 CAR-T cell-associated grade IV ICANS. The stable and rapid resolution of ICANS to grade 0 allowed us to discontinue systemic corticosteroid use, avoiding CAR-T cells ablation and ensuring preservation of CAR-T cell function. The described patient achieved a complete radiologic and clinical response to CD19 CAR-T cell therapy and remains disease-free after 9 months. This case demonstrates a promising example of how IT chemotherapy could be used as first-line treatment for the management of high-grade ICANS.


Antineoplastic Combined Chemotherapy Protocols , Cytarabine , Dexamethasone , Injections, Spinal , Methotrexate , Humans , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Methotrexate/administration & dosage , Methotrexate/therapeutic use , Cytarabine/administration & dosage , Cytarabine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Male , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/diagnosis , Middle Aged , Treatment Outcome , Immunotherapy, Adoptive/adverse effects , Lymphoma, B-Cell/drug therapy , Female
3.
Zool Res ; 45(3): 691-703, 2024 May 18.
Article En | MEDLINE | ID: mdl-38766750

General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.


Anesthetics, General , Brain , Oligodendroglia , Oligodendroglia/drug effects , Animals , Brain/drug effects , Anesthetics, General/adverse effects , Anesthetics, General/toxicity , Neurotoxicity Syndromes/etiology , Humans
4.
J Neuroimmune Pharmacol ; 19(1): 21, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771510

The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1ß), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.


Glycyrrhizic Acid , HMGB1 Protein , Rats, Sprague-Dawley , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Rats , Male , Phosphorylation/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism
5.
Ann Med ; 56(1): 2349796, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738799

BACKGROUND: Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS: The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS: Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION: Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.


Antigens, CD19 , Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Sialic Acid Binding Ig-like Lectin 2 , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Antigens, CD19/immunology , Sialic Acid Binding Ig-like Lectin 2/immunology , Receptors, Chimeric Antigen/immunology , Child , Treatment Outcome , Neoplasm, Residual , Cytokine Release Syndrome/etiology , Recurrence , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/immunology
6.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750264

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Cadmium , Inflammation , Oxidative Stress , Pyroptosis , Quetiapine Fumarate , Oxidative Stress/drug effects , Pyroptosis/drug effects , Animals , Cadmium/toxicity , Quetiapine Fumarate/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
7.
Sci Rep ; 14(1): 8017, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580836

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Amino Acids, Diamino , Decapoda , Neurotoxicity Syndromes , Animals , Male , Female , Humans , Nephropidae/metabolism , Ecosystem , Neurotoxins/toxicity , Amino Acids, Diamino/metabolism , Seafood/analysis , Decapoda/metabolism , beta-Alanine
8.
Neurotox Res ; 42(2): 24, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598025

The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.


Melatonin , Neurotoxicity Syndromes , Male , Rats , Animals , Antioxidants/pharmacology , Melatonin/pharmacology , Melatonin/therapeutic use , Nickel/toxicity , Rats, Wistar , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control
9.
Cell Death Dis ; 15(4): 261, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609369

Recombinant tissue-type plasminogen activator (r-tPA/Actilyse) stands as the prevailing pharmacological solution for treating ischemic stroke patients, of whom because their endogenous circulating tPA alone is not sufficient to rescue reperfusion and to promote favorable outcome. Beyond the tPA contributed by circulating endothelial cells and hepatocytes, neurons also express tPA, sparking debates regarding its impact on neuronal fate ranging from pro-survival to neurotoxic properties. In order to investigate the role of neuronal tPA during brain injuries, we developed models leading to its conditional deletion in neurons, employing AAV9-pPlat-GFP and AAV9-pPlat-Cre-GFP along with tPA floxed mice. These models were subjected to N-methyl-D-aspartate (NMDA)-induced excitotoxicity or thromboembolic ischemic stroke in mice. Initially, we established that our AAV9 constructs selectively transduce neurons, bypassing other brain cell types. Subsequently, we demonstrated that tPA-expressing neurons exhibit greater resistance against NMDA-induced excitotoxicity compared to tPA negative neurons. The targeted removal of tPA in neurons heightened the susceptibility of these neurons to cell death and prevented a paracrine neurotoxic effect on tPA non-expressing neurons. Under ischemic conditions, the self-neuroprotective influence of tPA encompassed both excitatory (GFP+/Tbr1+) and inhibitory (GFP+/GABA+) neurons. Our data indicate that endogenous neuronal tPA is a protective or deleterious factor against neuronal death in an excitotoxic/ischemic context, depending on whether it acts as an autocrine or a paracrine mediator.


Ischemic Stroke , Neurotoxicity Syndromes , Animals , Mice , Endothelial Cells , N-Methylaspartate/pharmacology , Neurons , Tissue Plasminogen Activator
10.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612588

Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.


Adenocarcinoma of Lung , Brain Neoplasms , Lung Neoplasms , Neurotoxicity Syndromes , Humans , Endothelial Cells , Adenocarcinoma of Lung/genetics , Brain Neoplasms/genetics , Lung Neoplasms/genetics , Gene Expression Profiling , Tumor Microenvironment/genetics
11.
J Hazard Mater ; 470: 134236, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613959

Organophosphorus compounds or organophosphates (OPs) are widely used as flame retardants, plasticizers, lubricants and pesticides. This contributes to their ubiquitous presence in the environment and to the risk of human exposure. The persistence of OPs and their bioaccumulative characteristics raise serious concerns regarding environmental and human health impacts. To address the need for safer OPs, this study uses a New Approach Method (NAM) to analyze the neurotoxicity pattern of 42 OPs. The NAM consists of a 4-step process that combines computational modeling with in vitro and in vivo experimental studies. Using spherical harmonic-based cluster analysis, the OPs were grouped into four main clusters. Experimental data and quantitative structure-activity relationships (QSARs) analysis were used in conjunction to provide information on the neurotoxicity profile of each group. Results showed that one of the identified clusters had a favorable safety profile, which may help identify safer OPs for industrial applications. In addition, the 3D-computational analysis of each cluster was used to identify meta-molecules with specific 3D features. Toxicity was found to correspond to the level of phosphate surface accessibility. Substances with conformations that minimize phosphate surface accessibility caused less neurotoxic effect. This multi-assay NAM could be used as a guide for the classification of OP toxicity, helping to minimize the health and environmental impacts of OPs, and providing rapid support to the chemical regulators, whilst reducing reliance on animal testing.


Organophosphates , Animals , Organophosphates/toxicity , Quantitative Structure-Activity Relationship , Organophosphorus Compounds/toxicity , Cluster Analysis , Humans , Neurotoxicity Syndromes/etiology
12.
Biochem Biophys Res Commun ; 710: 149895, 2024 May 28.
Article En | MEDLINE | ID: mdl-38593620

Neurotoxicity is a common side effect of certain types of therapeutic drugs, posing a major hurdle for their clinical application. Accumulating evidence suggests that ferroptosis is involved in the neurotoxicity induced by these drugs. Therefore, targeting ferroptosis is considered to be a reasonable approach to prevent such side effect. Arctigenin (ATG) is a major bioactive ingredient of Arctium lappa L., a popular medicinal plant in Asia, and has been reported to have multiple bioactivities including neuroprotection. However, the mechanisms underlying the neuroprotection of ATG has not been well elucidated. The purpose of this study was to investigate whether the neuroprotection of ATG was associated with its ability to protect neuronal cells from ferroptosis. Using neuronal cell ferroptosis model induced by either classic ferroptosis induces or therapeutic drugs, we demonstrated for the first time that ATG in the nanomolar concentration range effectively prevented neuronal cell ferroptosis induced by classic ferroptosis inducer sulfasalazine (SAS) and erastin (Era), or therapeutic drug oxaliplatin (OXA) and 5-fluorouracil (5-FU). Mechanistically, we uncovered that the anti-ferroptotic effect of ATG was attributed to its ability to activate SLC7A11-cystine-cysteine axis. The findings of the present study implicate that ATG holds great potential to be developed as a novel agent for preventing SLC7A11 inhibition-mediated neurotoxicity.


Antineoplastic Agents , Ferroptosis , Furans , Lignans , Neurotoxicity Syndromes , Humans , Cysteine , Cystine , Fluorouracil , Antineoplastic Agents/pharmacology , Amino Acid Transport System y+
13.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Article En | MEDLINE | ID: mdl-38588525

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Cytokine Release Syndrome , Immunotherapy, Adoptive , Lymphohistiocytosis, Hemophagocytic , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Animals
14.
Part Fibre Toxicol ; 21(1): 19, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600504

BACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.


Neurotoxicity Syndromes , Quantum Dots , Mice , Animals , Quantum Dots/toxicity , Carbon/toxicity , Carbon/chemistry , Metabolomics/methods , Brain , Neurotoxicity Syndromes/etiology , Biomarkers
15.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612696

Methylmercury is a known environmental pollutant that exhibits severe neurotoxic effects. However, the mechanism by which methylmercury causes neurotoxicity remains unclear. To date, we have found that oxidative stress-induced growth inhibitor 1 (OSGIN1), which is induced by oxidative stress and DNA damage, is also induced by methylmercury. Therefore, in this study, we investigated the relationship between methylmercury toxicity and the induction of OSGIN1 expression using C17.2 cells, which are mouse brain neural stem cells. Methylmercury increased both OSGIN1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, these increases were almost entirely canceled out by pretreatment with actinomycin D, a transcription inhibitor. Furthermore, similar results were obtained from cells in which expression of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) was suppressed, indicating that methylmercury induces OSGIN1 expression via NRF2. Methylmercury causes neuronal cell death by inducing apoptosis. Therefore, we next investigated the role of OSGIN1 in methylmercury-induced neuronal cell death using the activation of caspase-3, which is involved in apoptosis induction, as an indicator. As a result, the increase in cleaved caspase-3 (activated form) induced by methylmercury exposure was decreased by suppressing OSGIN1, and the overexpression of OSGIN1 further promoted the increase in cleaved caspase-3 caused by methylmercury. These results suggest, for the first time, that OSGIN1 is a novel factor involved in methylmercury toxicity, and methylmercury induces apoptosis in C17.2 cells through the induction of OSGIN1 expression by NRF2.


Methylmercury Compounds , Neural Stem Cells , Neurotoxicity Syndromes , Animals , Mice , Caspase 3/genetics , Methylmercury Compounds/toxicity , NF-E2-Related Factor 2/genetics , Apoptosis
16.
Cancer Immunol Immunother ; 73(6): 104, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630258

Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.


Neurotoxicity Syndromes , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Granulocyte Colony-Stimulating Factor/therapeutic use , Immunotherapy, Adoptive/adverse effects , Retrospective Studies , Cytokine Release Syndrome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Cell- and Tissue-Based Therapy
17.
Free Radic Biol Med ; 219: 1-16, 2024 Jul.
Article En | MEDLINE | ID: mdl-38614227

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.


Apoptosis , Bupivacaine , Carrier Proteins , Gene Knockdown Techniques , Oxidative Stress , RNA, Small Interfering , Spinal Cord , Animals , Rats , Oxidative Stress/drug effects , Bupivacaine/toxicity , Bupivacaine/adverse effects , PC12 Cells , Apoptosis/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/drug effects , RNA, Small Interfering/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Male , Thioredoxins/genetics , Thioredoxins/metabolism , Injections, Spinal , Rats, Sprague-Dawley , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/etiology , Neurons/drug effects , Neurons/pathology , Neurons/metabolism
18.
Curr Opin Support Palliat Care ; 18(2): 92-99, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38652455

PURPOSE OF REVIEW: Bispecific T-cell engager (TCE) therapies are revolutionising the treatment of several haematological malignancies, including B-cell acute lymphoblastic leukaemia, various subtypes of B-cell non-Hodgkin lymphoma, and multiple myeloma. Due to their unique mode of action in activating endogenous T cells, they are associated with several important early side effects, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. In addition, TCEs can cause target-specific toxicities and carry a significant risk of infection. RECENT FINDINGS: Currently, supportive care measures for TCEs have largely been inferred from other T-cell therapies, such as CAR-T (chimeric antigen receptor) therapy. Further research into TCE-specific supportive care measures is needed to improve the tolerability of these therapies for patients. A key question moving forward is understanding how to predict and minimise early toxicity (cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome). Associated infection risk is a significant cause of patient morbidity, therefore a better understanding of how to optimise TCE-dosing and prophylactic measures, such as intravenous immunoglobulin and antimicrobials, will be crucial to achieving an improved balance of toxicity and efficacy. Enabling early outpatient delivery of these therapies to select patients at lower risk of toxicity may also help to improve patient experience and quality of life. SUMMARY: Here we review up-to-date guidance and literature on existing supportive care measures for bispecific TCE therapy-related toxicities. We highlight both unique and serious side effects of TCE therapies that require improved management strategies to enable more patients to benefit from these efficacious drugs.


Cytokine Release Syndrome , Hematologic Neoplasms , Immunotherapy, Adoptive , Humans , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes/immunology , Neurotoxicity Syndromes/etiology , Antibodies, Bispecific/therapeutic use , Quality of Life , Receptors, Chimeric Antigen
19.
Toxicology ; 504: 153812, 2024 May.
Article En | MEDLINE | ID: mdl-38653376

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Calcium , Chickens , Mitochondria , Necroptosis , Wallerian Degeneration , Animals , Necroptosis/drug effects , Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Wallerian Degeneration/chemically induced , Wallerian Degeneration/pathology , Wallerian Degeneration/metabolism , Female , Mice , Tritolyl Phosphates/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/pharmacology , Cell Line, Tumor
20.
ALTEX ; 41(2): 152-178, 2024.
Article En | MEDLINE | ID: mdl-38579692

Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences (starting in 2005) shaped a community that has delivered a comprehensive battery of in vitro test methods (IVB). Its data interpretation is covered by a very recent OECD test guidance (No. 377). Here, we aim to overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of a targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput for this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.


Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.


Neurotoxicity Syndromes , Toxicity Tests , Animals , Animal Testing Alternatives , Models, Animal , Neurotoxicity Syndromes/etiology
...