Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.913
1.
Luminescence ; 39(5): e4768, 2024 May.
Article En | MEDLINE | ID: mdl-38719590

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Cobalt , Electrochemistry , Electrodes , Nanocomposites , Nickel , Nanocomposites/chemistry , Nickel/chemistry , Cobalt/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Luminescence , Microscopy, Electron, Scanning , Particle Size , Magnetic Phenomena , Nanoparticles/chemistry , Light , Catalysis , Oxides/chemistry , Methylene Blue/metabolism
2.
PLoS One ; 19(5): e0302972, 2024.
Article En | MEDLINE | ID: mdl-38722925

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Hydrogen , Nickel , Steel , Hydrogen/chemistry , Nickel/chemistry , Steel/chemistry , Electric Power Supplies , Surface Properties , Materials Testing
3.
J Chromatogr A ; 1726: 464961, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38723491

The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.


Carbon , Limit of Detection , Metal-Organic Frameworks , Microspheres , Polycyclic Aromatic Hydrocarbons , Solid Phase Microextraction , Tea , Solid Phase Microextraction/methods , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Tea/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Porosity , Adsorption , Nickel/chemistry , Nickel/isolation & purification , Chromatography, Gas/methods , Reproducibility of Results
4.
BMC Oral Health ; 24(1): 564, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745154

BACKGROUND: Alterations in the mechanical properties of the materials utilized in orthodontic appliances could affect the working properties of the appliances, thereby affecting clinical progress and outcome. Numerous studies have confirmed the correlation between alloy corrosion and raised surface roughness, which has a direct impact on the working characteristics of orthodontic archwires. METHODS: Thirty nickel-titanium (NiTi) orthodontic archwires were utilized in this study. Patients were randomly selected and allocated into three groups according to the randomization plan; (The control group): subjects practiced regular oral hygiene; (The fluoride group): subjects used fluoride for intensive prophylaxis; (The chlorhexidine group): subjects used chlorhexidine. Representative samples were evaluated by SEM, and then SEM images with high resolution were examined using Image J software to determine the surface roughness and obtain the results for further statistical analysis. RESULTS: Our findings indicated a significant difference was found between the three groups regarding the anterior and posterior parts between the control and the two other groups and a non-significant difference between NaF and CHX groups. Overall, the p-value for group comparisons was 0.000 for both parts, indicating a highly significant difference especially between the control and NaF groups. CONCLUSION: Mouthwashes containing sodium fluoride demonstrated more significant surface alterations than the control and CHX groups and should be prescribed in accordance with orthodontic materials to reduce side effects.


Alloys , Chlorhexidine , Dental Alloys , Microscopy, Electron, Scanning , Nickel , Orthodontic Wires , Sodium Fluoride , Surface Properties , Humans , Sodium Fluoride/therapeutic use , Chlorhexidine/therapeutic use , Corrosion , Dental Alloys/chemistry , Nickel/chemistry , Titanium/chemistry , Cariostatic Agents/therapeutic use , Cariostatic Agents/chemistry , Male , Female , Young Adult , Mouthwashes/therapeutic use , Mouthwashes/chemistry , Image Processing, Computer-Assisted/methods , Adolescent , Adult , Oral Hygiene
5.
Anal Chim Acta ; 1306: 342613, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692794

Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 µA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.


Biosensing Techniques , Electrochemical Techniques , Gels , Glucose , Gold , Nickel , Biosensing Techniques/methods , Nickel/chemistry , Gels/chemistry , Gold/chemistry , Glucose/analysis , Electrodes , Nanowires/chemistry , Humans , Limit of Detection
6.
Sci Rep ; 14(1): 10032, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693156

The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.


Cobalt , Coordination Complexes , Copper , Isothiocyanates , Molecular Docking Simulation , Nickel , Nickel/chemistry , Copper/chemistry , Humans , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cobalt/chemistry , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
7.
PLoS One ; 19(5): e0302551, 2024.
Article En | MEDLINE | ID: mdl-38696475

Recently developed Nickel-Titanium (NiTi) instruments with practical changes have resulted in safer instrumentation. In addition, topographical features on the file surface are a contributing factor to clinical durability. Therefore, this study aimed to investigate both the cyclic fatigue resistance and the roughness change of MTwo and Rotate instruments (VDW, Munich, Germany). Each instrument (n = 6/each group) was scanned with an atomic force microscopy prior to and after instrumentation. In addition, cyclic fatigue testing was conducted for each instrument (n = 11/each group) with stainless-steel blocks, including 45°-60°-90° degrees of curvature milled to the instruments' size. The roughness parameters increased for both systems after instrumentation (p<0.05). Both systems presented an increased roughness following instrumentation (p<0.05). The cyclic fatigue resistance was lowest at 90° for both systems (p<0.05), whereas the Rotate files presented a higher resistance than that of the Mtwo files (p<0.05). Compared to the Mtwo files, Rotate files presented better resistance, while the resistance decreased as the curvature increased.


Nickel , Surface Properties , Titanium , Titanium/chemistry , Nickel/chemistry , Microscopy, Atomic Force , Materials Testing , Root Canal Preparation/instrumentation
8.
Nat Commun ; 15(1): 4036, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740750

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Bacterial Proteins , Nickel , Nickel/metabolism , Nickel/chemistry , Animals , Virulence/drug effects , Bacterial Proteins/metabolism , Biofilms/drug effects , Zinc/metabolism , Zinc/chemistry , Moths/microbiology , Urease/metabolism , Urease/antagonists & inhibitors , Biological Transport
9.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38616401

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Electrons , Escherichia coli , Hydrogen , Polymers , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogen/chemistry , Polymers/chemistry , Polymers/metabolism , Indoles/chemistry , Indoles/metabolism , Nickel/chemistry , Nickel/metabolism , Electron Transport
10.
Mikrochim Acta ; 191(5): 280, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649540

An interfacial galvanic replacement strategy to controllable synthesize palladium nanoparticles (Pd NPs)-modified NiFe MOF nanocomposite on nickel foam, which served as an efficient sensing platform for quantitative determination of dopamine (DA). Pd NPs grown in situ on the nanosheets of NiFe MOF via self-driven galvanic replacement reaction (GRR) and well uniform distribution was achieved. This method effectively reduced the aggregation of metallic nanoparticles and significantly promoted the electron transfer rate during the electrochemical process, leading to improved electrocatalytic activity for DA oxidation. Remarkably, the precisely constructed biosensor achieved a low detection limit (LOD) of 0.068 µM and recovery of 94.1% (RSD 6.7%, N = 3) for simulated real sample detection and also exhibited superior selectivity and stability. The results confirmed that the as-fabricated Pd-NiFe/NF composite electrode could realize the quantitative determination of DA and showed promising prospects in real sample biosensing.


Biosensing Techniques , Dopamine , Metal-Organic Frameworks , Nanostructures , Dopamine/analysis , Nanostructures/chemistry , Nanostructures/ultrastructure , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/standards , Nickel/chemistry , Electrodes/standards , Palladium/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Microscopy, Electron, Scanning , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/ultrastructure , Sensitivity and Specificity , Electric Conductivity , Microscopy, Electron, Transmission , Iron/chemistry , Reproducibility of Results
11.
Chemosphere ; 357: 142037, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626811

In this study, a new catalyst for catalytic ozonation was obtained by in-situ growth of Mn-Ni3S2 nanosheets on the surface of nickel foam (NF). The full degradation of p-nitrophenol (PNP) was accomplished under optimal conditions in 40 min. The effects of material dosage, ozone dosage, pH and the presence of inorganic anions on the degradation efficiency of PNP were investigated. ESR analysis showed that singlet oxygen (1O2) and superoxide radical (O2•-) are the main contributors of PNP degradation. This study offers a new combination of supported catalysts with high efficiency and easy recovery, which provides a new idea for wastewater treatment.


Manganese , Nickel , Nitrophenols , Ozone , Water Pollutants, Chemical , Nickel/chemistry , Nitrophenols/chemistry , Catalysis , Ozone/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods
12.
Mikrochim Acta ; 191(5): 252, 2024 04 09.
Article En | MEDLINE | ID: mdl-38589716

A flexible, wearable, non-invasive contact lens sensor utilizing nickel-cobalt metal-organic framework (Ni-Co-MOF) based hydrogel is introduced for urea monitoring in tear samples. The synthesized Ni-Co-MOF hydrogel exhibits a porous structure with interconnected voids, as visualized by Scanning Electron Microscopy (SEM). Detailed structural and vibrational properties of the material were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed Ni-Co-MOF hydrogel sensor showcases a detection limit of 0.445 mM for urea within a linear range of 0.5-70 mM. Notably, it demonstrates exceptional selectivity, effectively distinguishing against interfering species like UA, AA, glucose, dopamine, Cl-, K+, Na+, Ca2+, and IgG. The enhanced electrocatalytic performance of the Ni-Co-MOF hydrogel electrode is attributed to the presence of Ni and Co, fostering Ni2+ oxidation on the surface and forming a Co2+ complex that acts as a catalyst for urea oxidation. The fabricated sensor exhibits successful detection and retrieval of urea in simulated tear samples, showcasing promising potential for bioanalytical applications. The binder-free, non-toxic nature of the Ni-Co-MOF hydrogel sensor presents exciting avenues for future utilization in non-enzymatic electrochemical sensing, including applications in wearable devices, point-of-care diagnostics, and personalized healthcare monitoring.


Metal-Organic Frameworks , Wearable Electronic Devices , Nickel/chemistry , Metal-Organic Frameworks/chemistry , Urea , Cobalt , Hydrogels
13.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627300

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Blood Glucose , Bridged Bicyclo Compounds, Heterocyclic , Cobalt , Graphite , Nickel , Polymers , Humans , Nickel/chemistry , Blood Glucose/analysis , Reproducibility of Results , Blood Glucose Self-Monitoring , Glucose/analysis
14.
Waste Manag ; 182: 63-73, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38640752

The incineration bottom ash (IBA) was impregnated with nickel to catalyze toluene (tar surrogate) steam reforming. A toluene conversion of >80 % was achieved at 800℃ without activity decay in a 100-h test for 15 %Ni/IBA. An activation stage was observed for Ni/IBA catalysts in the initial 50 âˆ¼ 400 min under different reaction conditions. A series of experiments and characterizations were performed to explore the possible mechanisms for the activation. It was found that the iron species in IBA gradually migrated to the catalyst surface and formed a Ni-FeOx complex owing to the metal-support interaction. The synergy of Ni-FeOx played an important role in improving the activity of Ni/IBA due to the enhanced lattice oxygen activity. Additionally, Ni/IBA catalysts showed a much lower coke deposition rate than Ni/Al2O3 (1.12 vs. 3.45 mg-C/gcat∙h) because of the variable states of FeOx and the abundant basic sites caused by the alkali and alkaline earth metals contained in IBA.


Ferric Compounds , Incineration , Nickel , Nickel/chemistry , Catalysis , Ferric Compounds/chemistry , Incineration/methods , Toluene/chemistry , Coal Ash/chemistry
15.
Water Res ; 256: 121616, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657305

Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment, enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials, the transition to pilot-scale applications remains limited, leaving the actual performance of these scaled-up cathodes largely unknown. In this study, nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days, with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration, yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m-2 d-1 and 0.21 ± 0.01 m3 m-3 d-1). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand, the higher price of Ni-foam compared to stainless-steel should also be considered, which may constrain its use in real applications. By carefully analysing the energy balance of the system, this study demonstrates that MECs have the potential to be net energy producers, in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements, they also resulted in enhanced hydrogen production. For our system, a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally, the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria, predominantly Geobacter and Bacteroides, which appeared to be well-suited to transform complex organic matter into hydrogen.


Electrodes , Electrolysis , Hydrogen , Nickel , Wastewater , Wastewater/chemistry , Hydrogen/metabolism , Nickel/chemistry , Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Pilot Projects , Industrial Waste
16.
Analyst ; 149(10): 2905-2914, 2024 May 13.
Article En | MEDLINE | ID: mdl-38572989

High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 µA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.


Copper , Creatinine , Electrodes , Electroplating , Limit of Detection , Metal Nanoparticles , Nickel , Copper/chemistry , Nickel/chemistry , Creatinine/urine , Creatinine/chemistry , Metal Nanoparticles/chemistry , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Reproducibility of Results
17.
ACS Biomater Sci Eng ; 10(5): 2945-2955, 2024 May 13.
Article En | MEDLINE | ID: mdl-38669114

Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.


Histidine , Molecular Dynamics Simulation , Nickel , Histidine/chemistry , Nickel/chemistry , Elastin/chemistry , Proteins/chemistry , Peptides/chemistry
18.
Chemosphere ; 357: 141849, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599331

Electrocatalytic destruction of per- and polyfluoroalkyl substances (PFAS) is an emerging approach for treatment of PFAS-contaminated water. In this study, a systematic ab initio investigation of PFAS adsorption on Ni, a widely used electrocatalyst, was conducted by means of dispersion-corrected Density Functional Theory (DFT) calculations. The objective of this investigation was to elucidate the adsorption characteristics and charge transfer mechanisms of different PFAS molecules on Ni surfaces. PFAS adsorption on three of the most thermodynamically favorable Ni surface facets, namely (001), (110), and (111), was investigated. Additionally, the role of PFAS chain length and functional group was studied by comparing the adsorption characteristics of different PFAS compounds, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA). For each PFAS molecule-Ni surface facet pair, different adsorption configurations were considered. Further calculations were carried out to reveal the effect of solvation, pre-adsorbed atomic hydrogen (H), and surface defects on the adsorption energy. Overall, the results revealed that the adsorption of PFAS on Ni surfaces is energetically favorable, and that the adsorption is primarily driven by the functional groups. The presence of preadsorbed H and the inclusion of solvation produced less exothermic adsorption energies, while surface vacancy defects showed mixed effects on PFAS adsorption. Taken together, the results of this study suggest that Ni is a promising electrocatalyst for PFAS adsorption and destruction, and that proper control for the exposed facets and surface defects could enhance the adsorption stability.


Caprylates , Density Functional Theory , Fluorocarbons , Nickel , Adsorption , Fluorocarbons/chemistry , Nickel/chemistry , Caprylates/chemistry , Water Pollutants, Chemical/chemistry , Alkanesulfonic Acids/chemistry , Thermodynamics , Catalysis
19.
J Hazard Mater ; 471: 134295, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38631253

There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.


Cobalt , Nickel , Soil Microbiology , Soil Pollutants , Nickel/toxicity , Nickel/chemistry , Cobalt/chemistry , Cobalt/toxicity , Soil Pollutants/metabolism , Metals, Heavy/toxicity , Metals, Heavy/chemistry , Biological Availability , Mining , Germination/drug effects , Environmental Restoration and Remediation/methods , Bacteria/metabolism , Bacteria/drug effects , Compressive Strength , Industrial Waste
20.
Chemosphere ; 358: 142087, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657696

Bidens pilosa is classified as an invasive plant and has become a problematic weed to many agricultural crops. This species strongly germinates, grows and reproduces and competing for nutrients with local plants. To lessen the influence of Bidens pilosa, therefore, converting this harmful species into carbon materials as adsorbents in harm-to-wealth and valorization strategies is required. Here, we synthesized a series of magnetic composites based on MFe2O4 (M = Ni, Co, Zn, Fe) supported on porous carbon (MFOAC) derived from Bidens pilosa by a facile hydrothermal method. The Bidens pilosa carbon was initially activated by condensed H3PO4 to increase the surface chemistry. We observed that porous carbon loaded NiFe2O4 (NFOAC) reached the highest surface area (795.7 m2 g-1), followed by CoFe2O4/AC (449.1 m2 g-1), Fe3O4/AC (426.1 m2 g-1), ZnFe2O4/AC (409.5 m2 g-1). Morphological results showed nanoparticles were well-dispersed on the surface of carbon. RhB, MO, and MR dyes were used as adsorbate to test the adsorption by MFOAC. Effect of time (0-360 min), concentration (5-50 mg L-1), dosage (0.05-0.2 g L-1), and pH (3-9) on dyes adsorption onto MFOAC was investigated. It was found that NFOAC obtained the highest maximum adsorption capacity against dyes, RhB (107.96 mg g-1) < MO (148.05 mg g-1) < MR (153.1 mg g-1). Several mechanisms such as H bonding, π-π stacking, cation-π interaction, and electrostatic interaction were suggested. With sufficient stability and capacity, NFOAC can be used as potential adsorbent for real water treatment systems.


Bidens , Carbon , Coloring Agents , Ferric Compounds , Adsorption , Bidens/chemistry , Porosity , Carbon/chemistry , Ferric Compounds/chemistry , Coloring Agents/chemistry , Nickel/chemistry , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Plant Weeds/drug effects , Cobalt/chemistry
...