RESUMEN
Austin (AT) and its derivatives (dehydroaustin (DAT) and acetoxydehydroaustin (ADAT)) produced by Penicillium brasilianum MG-11 exhibit toxicity to insects, yet their targets are unknown. Here, we used whole-cell patch-clamp electrophysiology to investigate the action of AT family compounds on cockroach acetylcholine (ACh), γ-aminobutyric acid (GABA) and l-glutamate receptors expressed in the American cockroach (Periplaneta americana) neuron. U-tube application of AT or its derivatives did not induce any current amplitudes, suggesting that they did not act as agonist of these three receptors. In the second step of experiments, they were bath-applied for 1min before co-application with the corresponding ligand. We found that AT and its derivatives had no effect on GABA and l-glutamate-induced currents, whereas they significantly reduced ACh- and epibatidine-induced currents, showing that these compounds acted as selective antagonists of nicotinic acetylcholine receptors (nAChRs) expressed in the cockroach neuron. Of the compounds, DAT showed the highest blocking potency for nAChRs, differentially attenuating the peak and slowly desensitizing current amplitude of ACh-induced responses with pIC(50) (=-logIC(50) (M)) values of 6.11 and 5.91, respectively. DAT reduced the maximum normalized response to ACh without a significant shift in EC(50), suggesting that the blocking action is not competitive with ACh.
Asunto(s)
Antagonistas Nicotínicos/toxicidad , Penicillium , Periplaneta/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Terpenos/toxicidad , Animales , Cucarachas , Relación Dosis-Respuesta a Droga , Masculino , Antagonistas Nicotínicos/aislamiento & purificación , Penicillium/aislamiento & purificación , Periplaneta/fisiología , Receptores Nicotínicos/fisiología , Terpenos/aislamiento & purificaciónRESUMEN
Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 microliter of either 0.1% ethidium bromide in normal saline (19 rats) or 0.9% saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5% glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuous and were found in only 34% of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.
Asunto(s)
Barrera Hematoencefálica/inmunología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/inmunología , Etidio/toxicidad , Esclerosis Múltiple/inmunología , Antagonistas Nicotínicos/toxicidad , Médula Espinal/inmunología , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/patología , Etidio/metabolismo , Femenino , Inyecciones Espinales , Linfocitos/ultraestructura , Masculino , Microscopía Electrónica , Esclerosis Múltiple/patología , Proteína Básica de Mielina , Antagonistas Nicotínicos/metabolismo , Ratas , Ratas WistarRESUMEN
Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 mul of either 0.1 percent ethidium bromide in normal saline (19 rats) or 0.9 percent saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5 percent glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuos and were found in only 34 percent of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.