Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46.778
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731952

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732018

Hydroxytyrosol (HT) is a bioactive olive oil phenol with beneficial effects in a number of pathological situations. We have previously demonstrated that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic-stroke-associated damage in mice. Our exploratory pilot study examined this effect in humans. Particularly, a nutritional supplement containing 15 mg of HT/day was administered to patients 24 h after the onset of stroke, for 45 days. Biochemical and oxidative-stress-related parameters, blood pressure levels, serum proteome, and neurological and functional outcomes were evaluated at 45 and 90 days and compared to a control group. The main findings were that the daily administration of HT after stroke could: (i) favor the decrease in the percentage of glycated hemoglobin and diastolic blood pressure, (ii) control the increase in nitric oxide and exert a plausible protective effect in oxidative stress, (iii) modulate the evolution of the serum proteome and, particularly, the expression of apolipoproteins, and (iv) be beneficial for certain neurological and functional outcomes. Although a larger trial is necessary, this study suggests that HT could be a beneficial nutritional complement in the management of human stroke.


Dietary Supplements , Oxidative Stress , Phenylethyl Alcohol , Stroke , Humans , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Male , Stroke/drug therapy , Oxidative Stress/drug effects , Female , Aged , Pilot Projects , Middle Aged , Blood Pressure/drug effects , Nitric Oxide/metabolism
3.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700737

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Ascomycota , Calcium Signaling , Perylene , Perylene/analogs & derivatives , Quinones , Ascomycota/metabolism , Ascomycota/genetics , Ascomycota/growth & development , Quinones/metabolism , Perylene/metabolism , Nitric Oxide/metabolism , Heat-Shock Response , Calcium/metabolism , Hot Temperature
4.
BMC Pulm Med ; 24(1): 214, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698432

BACKGROUND: In western Yokohama, our hospital and primary care clinics manage adults with asthma via a coordinated care system. We investigated the changes in the fractional expired nitric oxide (FeNO), forced expiratory volume in 1 second (FEV1), and forced oscillation technique (FOT) parameters over 3 years in a cohort of patients in our collaborative system. METHODS: From 288 adults with well controlled asthma managed under the Yokohama Seibu Hospital coordinated care system between January 2009 and May 2018, we selected 99 subjects to undergo spirometry, FeNO and FOT testing over 3 years and analyzed the changes in these parameters. RESULTS: Of the 99 patients enrolled, 17 (17.2%) experienced at least one exacerbation (insufficiently controlled (IC)), whereas, 82 (82.8%) remained in well controlled during the 3-year study period. Of well-controlled patients, 54 patients (54.5%) met the criteria for clinical remission under treatment (CR); the remaining 28 patients did not meet the CR criteria (WC). There were no differences in FeNO, FEV1, or FOT parameters at baseline among the IC, WC, and CR groups. The levels of FEV1 decreased gradually, whereas the levels of FeNO decreased significantly over 3 years. The levels of percent predicted FEV1 (%FEV1) significantly increased. We also observed significant improvement in FOT parameters; reactance at 5 Hz (R5), resonant frequency (Fres), and integral of reactance up to the resonant frequency (AX). The CR group demonstrated significant relationships between the change in FeNO and the change in FEV1 and between the change in FEV1 and the change in FOT parameters. No significant correlations emerged in the IC or WC group. CONCLUSION: The decrease in FeNO and increase in %FEV1, we observed in all study participants suggest that the coordinated care system model benefits patients with asthma. Although it is difficult to predict at baseline which patients will experience an exacerbation, monitoring changes in FeNO and FEV1 is useful in managing patients with asthma. Furthermore, monitoring changes in R5, Fres, and AX via forced oscillation technique testing is useful for detecting airflow limitation.


Asthma , Spirometry , Humans , Male , Female , Asthma/physiopathology , Asthma/therapy , Asthma/diagnosis , Forced Expiratory Volume , Middle Aged , Adult , Nitric Oxide/analysis , Nitric Oxide/metabolism , Aged , Fractional Exhaled Nitric Oxide Testing
5.
Sci Rep ; 14(1): 11047, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744989

Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.


Anti-Inflammatory Agents , Arthritis, Experimental , Nitric Oxide , Plant Extracts , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Rats , RAW 264.7 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nitric Oxide/metabolism , Arthritis, Experimental/drug therapy , Water/chemistry , Carrageenan , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Male , Interleukin-6/metabolism , Interleukin-6/blood , Edema/drug therapy , Inflammation/drug therapy
6.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38712392

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


11-beta-Hydroxysteroid Dehydrogenase Type 1 , Corticosterone , Isoproterenol , Rats, Wistar , Animals , Male , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Isoproterenol/pharmacology , Corticosterone/metabolism , Adrenergic beta-Agonists/pharmacology , Adipose Tissue/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Receptors, Adrenergic, beta/metabolism , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Culture Media, Conditioned/pharmacology
7.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720301

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Anti-Bacterial Agents , Bandages , Biofilms , Nitric Oxide , Photothermal Therapy , Rats, Sprague-Dawley , Wound Healing , Animals , Wound Healing/drug effects , Nitric Oxide/pharmacology , Nitric Oxide/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Photothermal Therapy/methods , Male , Chitosan/chemistry , Chitosan/pharmacology , Nanofibers/chemistry , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Diabetes Mellitus, Experimental/complications , Staphylococcus aureus/drug effects , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , S-Nitrosoglutathione/pharmacology , S-Nitrosoglutathione/chemistry
8.
PeerJ ; 12: e17252, 2024.
Article En | MEDLINE | ID: mdl-38708345

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Cystatin C , Macrophages , Nitric Oxide , Porphyromonas gingivalis , Reactive Oxygen Species , Porphyromonas gingivalis/immunology , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cystatin C/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Cytokines/metabolism , Periodontitis/microbiology , Periodontitis/immunology , Periodontitis/drug therapy , Periodontitis/pathology , Apoptosis/drug effects
9.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711407

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Cerebral Cortex , Ethanol , Fatty Acids, Omega-3 , Nitric Oxide , Rats, Wistar , Superoxide Dismutase , Animals , Male , Rats , Fatty Acids, Omega-3/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Malondialdehyde/metabolism
10.
Acta Biochim Pol ; 71: 12433, 2024.
Article En | MEDLINE | ID: mdl-38721304

The study aimed to determine the osteointegration markers after dental implantation and evaluate their predictive value. The study was performed on 60 practically healthy persons who needed teeth rehabilitation using dental implants. The conical-shaped implants (CI) and hexagonal implants (HI) were used. The content of Osteopontin (OPN), Osteocalcin (OC), Alkaline Phosphatase (ALP), Osteoprotegerin (OPG), and nitric oxide (NO) was determined in patients' gingival crevicular fluid (GCF) and peri-implant sulcular fluid (PISF), collected 1, 3, and 6 months after implantation. During the 3-6 months of observation level of OPN increased in patients with CIs (<50 years > 50 years) and HIs (<50 years) (CI: <50 years F = 36.457, p < 0.001; >50 years F = 30.104, p < 0.001; HI < 50 years F = 2.246, p < 0.001), ALP increased in patients with CIs (<50 years: F = 19.58, p < 0.001; >50 years: F = 12.01; p = 0.001) and HIs (<50 years) (F = 18.51, p < 0.001), OC increased in patients <50 years (CI: F = 33.72, p < 0.001; HI: F = 55.57, p < 0.001), but in patients >50 years - on the 3 days month (CI: F = 18.82, p < 0.001; HI: F = 26.26, p < 0.001), but sharply decreased at the end of sixth month. OPG increased during 1-3 months of the observation in patients <50 years (CI: F = 4.63, p = 0.037; HI: F = 2.8927, p = 0.046), but at the end of the sixth month returned to the initial level; NO content in PISF increased in patients with CI (>50 years) during 1-6 months of the observation (F = 27.657, p < 0.001). During the post-implantation period, age-related differences in osteointegration were observed. Patients <50 years old had relatively high levels of OPN, ALP, OC, and OPG in PISF, resulting in less alveolar bone destruction around dental implants and more intensive osteointegration. These indicators may be used as biological markers for monitoring implant healing. The process of osseointegration was more intense in CIs due to their comparatively high mechanical loading.


Alkaline Phosphatase , Biomarkers , Dental Implants , Gingival Crevicular Fluid , Osseointegration , Osteocalcin , Osteopontin , Osteoprotegerin , Humans , Middle Aged , Biomarkers/metabolism , Female , Male , Osteoprotegerin/metabolism , Gingival Crevicular Fluid/metabolism , Alkaline Phosphatase/metabolism , Osteocalcin/metabolism , Adult , Osteopontin/metabolism , Prognosis , Nitric Oxide/metabolism , Dental Implantation/methods , Time Factors
11.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38726824

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Cicer , Germination , Mitochondria , Mitochondrial Proteins , Nitric Oxide , Oxidative Stress , Oxidoreductases , Plant Proteins , Superoxides , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Plant Proteins/metabolism , Germination/drug effects , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Pyruvic Acid/metabolism
12.
Sci Rep ; 14(1): 10145, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698070

For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.


Antioxidants , Gas Chromatography-Mass Spectrometry , Macrophages , Nitric Oxide , Plant Extracts , Saussurea , Saussurea/chemistry , Mice , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Lipopolysaccharides/pharmacology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 720-726, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708506

OBJECTIVE: To explore the therapeutic effect of transdermal patches containing Cassia seed extract applied at the navel on slow transit constipation (STC) in rats and explore the spectrum-effect relationship of the patches. METHOD: In a STC rat model established by gavage of compound diphenoxylate suspension for 14 days, the transdermal patches containing low, medium and high doses of Cassia seed extract (41.75, 125.25, and 375.75 mg/kg, respectively) were applied at the Shenque acupoint on the abdomen for 14 days after modeling, with constipation patches (13.33 mg/kg) as the positive control. After the treatment, fecal water content and intestinal propulsion rate of the rats were calculated, the pathological changes in the colon were observed with HE staining. Serum NO and NOS levels and the total protein content and NO, NOS and AChE expressions in the colon tissue were determined. HPLC fingerprints of the transdermal patches were established, and the spectrum-effect relationship between the common peaks of the patches and its therapeutic effect were analyzed. RESULTS: Treatment with the transdermal patches containing Cassia seed extract significantly increased fecal water content and intestinal propulsion rate of the rat models, where no pathological changes in the colon tissue were detected. The treatment also suppressed the elevations of serum and colonic NO and NOS levels and reduction of AChE in STC rats. Twenty-eight common peaks were confirmed in the HPLC fingerprints of 6 batches of Cassia seed extract-containing patches. Analysis of the spectrum-effect relationship showed that autrantio-obtusin had the greatest contribution to the therapeutic effect of the patches in STC rats. CONCLUSION: The Cassia seed extract-containing patches alleviates STC in rats via synergistic actions of multiple active ingredients in the extract, where autrantio-obtusin, rhein, chrysoobtusin, obtusin, obtusifolin, emodin, chrysophanol, and physcion are identified as the main active ingredients.


Cassia , Constipation , Plant Extracts , Seeds , Transdermal Patch , Animals , Rats , Cassia/chemistry , Constipation/drug therapy , Seeds/chemistry , Rats, Sprague-Dawley , Colon/drug effects , Acupuncture Points , Nitric Oxide/metabolism , Disease Models, Animal , Male , Drugs, Chinese Herbal/therapeutic use
14.
Planta ; 259(6): 144, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709333

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
15.
Front Immunol ; 15: 1361891, 2024.
Article En | MEDLINE | ID: mdl-38711495

Background: To date, studies investigating the association between pre-biologic biomarker levels and post-biologic outcomes have been limited to single biomarkers and assessment of biologic efficacy from structured clinical trials. Aim: To elucidate the associations of pre-biologic individual biomarker levels or their combinations with pre-to-post biologic changes in asthma outcomes in real-life. Methods: This was a registry-based, cohort study using data from 23 countries, which shared data with the International Severe Asthma Registry (May 2017-February 2023). The investigated biomarkers (highest pre-biologic levels) were immunoglobulin E (IgE), blood eosinophil count (BEC) and fractional exhaled nitric oxide (FeNO). Pre- to approximately 12-month post-biologic change for each of three asthma outcome domains (i.e. exacerbation rate, symptom control and lung function), and the association of this change with pre-biologic biomarkers was investigated for individual and combined biomarkers. Results: Overall, 3751 patients initiated biologics and were included in the analysis. No association was found between pre-biologic BEC and pre-to-post biologic change in exacerbation rate for any biologic class. However, higher pre-biologic BEC and FeNO were both associated with greater post-biologic improvement in FEV1 for both anti-IgE and anti-IL5/5R, with a trend for anti-IL4Rα. Mean FEV1 improved by 27-178 mL post-anti-IgE as pre-biologic BEC increased (250 to 1000 cells/µL), and by 43-216 mL and 129-250 mL post-anti-IL5/5R and -anti-IL4Rα, respectively along the same BEC gradient. Corresponding improvements along a FeNO gradient (25-100 ppb) were 41-274 mL, 69-207 mL and 148-224 mL for anti-IgE, anti-IL5/5R, and anti-IL4Rα, respectively. Higher baseline BEC was also associated with lower probability of uncontrolled asthma (OR 0.392; p=0.001) post-biologic for anti-IL5/5R. Pre-biologic IgE was a poor predictor of subsequent pre-to-post-biologic change for all outcomes assessed for all biologics. The combination of BEC + FeNO marginally improved the prediction of post-biologic FEV1 increase (adjusted R2: 0.751), compared to BEC (adjusted R2: 0.747) or FeNO alone (adjusted R2: 0.743) (p=0.005 and <0.001, respectively); however, this prediction was not improved by the addition of IgE. Conclusions: The ability of higher baseline BEC, FeNO and their combination to predict biologic-associated lung function improvement may encourage earlier intervention in patients with impaired lung function or at risk of accelerated lung function decline.


Asthma , Biological Products , Biomarkers , Eosinophils , Immunoglobulin E , Humans , Asthma/drug therapy , Asthma/diagnosis , Asthma/immunology , Male , Female , Middle Aged , Immunoglobulin E/blood , Immunoglobulin E/immunology , Adult , Eosinophils/immunology , Biological Products/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Treatment Outcome , Registries , Severity of Illness Index , Leukocyte Count , Nitric Oxide/metabolism , Aged , Cohort Studies
16.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732250

One previously undescribed alkaloid, named penifuranone A (1), and three known compounds (2-4) were isolated from the mangrove endophytic fungus Penicillium crustosum SCNU-F0006. The structure of the new alkaloid (1) was elucidated based on extensive spectroscopic data analysis and single-crystal X-ray diffraction analysis. Four natural isolates and one new synthetic derivative of penifuranone A, compound 1a, were screened for their antimicrobial, antioxidant, and anti-inflammatory activities. Bioassays revealed that penifuranone A (1) exhibited strong anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells with an IC50 value of 42.2 µM. The docking study revealed that compound 1 exhibited an ideal fit within the active site of the murine inducible nitric oxide synthase (iNOS), establishing characteristic hydrogen bonds.


Alkaloids , Nitric Oxide , Penicillium , Penicillium/chemistry , Penicillium/metabolism , Mice , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , RAW 264.7 Cells , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Nitric Oxide Synthase Type II/metabolism , Molecular Docking Simulation , Lipopolysaccharides , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Structure
17.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735908

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Cadmium , Catharanthus , Gene Expression Regulation, Plant , Melatonin , Nitric Oxide , Oxidative Stress , Plant Leaves , Vinblastine , Catharanthus/metabolism , Catharanthus/genetics , Catharanthus/drug effects , Nitric Oxide/metabolism , Cadmium/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Vinblastine/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
18.
Anal Chem ; 96(19): 7479-7486, 2024 May 14.
Article En | MEDLINE | ID: mdl-38689560

In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, PDM-NO, which can discriminate activated microglia from their resting state. The nonfluorescent PDM-NO exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. PDM-NO demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, PDM-NO is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.


COVID-19 , Fluorescent Dyes , Lysosomes , Microglia , Nitric Oxide , Phagocytosis , SARS-CoV-2 , Microglia/virology , Microglia/metabolism , SARS-CoV-2/isolation & purification , Humans , Lysosomes/metabolism , Nitric Oxide/metabolism , Nitric Oxide/analysis , COVID-19/virology , COVID-19/diagnosis , COVID-19/metabolism , Fluorescent Dyes/chemistry , RNA, Viral/analysis , RNA, Viral/metabolism , Neuroinflammatory Diseases , Cell Line , Phenotype
19.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693753

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Anti-Bacterial Agents , Nanoparticles , Nitric Oxide , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , RAW 264.7 Cells , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Immunotherapy/methods , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Bacterial Infections/drug therapy , Trehalose/chemistry , Trehalose/pharmacology
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732088

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Maternal Age , Mesenchymal Stem Cells , Nitric Oxide , Oxidation-Reduction , Reactive Oxygen Species , Thiobarbituric Acid Reactive Substances , Umbilical Cord , Humans , Female , Pregnancy , Adult , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Thiobarbituric Acid Reactive Substances/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Glutathione/metabolism , Glutathione/blood , Cell Survival , Oxidative Stress , Plasma/metabolism
...