Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.186
1.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700457

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
2.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675628

In this study, we present a comprehensive investigation of 2-amino-4,6-diphenylnicotinonitriles (APNs, 1-6), including their synthesis, cytotoxicity against breast cancer cell lines, and photophysical properties. Compound 3 demonstrates exceptional cytotoxicity, surpassing the potency of Doxorubicin. The fluorescence spectra of the synthesized 1-6 in different solvents reveal solvent-dependent shifts in the emission maximum values, highlighting the influence of the solvent environment on their fluorescence properties. A quantum chemical TD-DFT analysis provides insights into the electronic structure and fluorescence behavior of 1-6, elucidating HOMO-LUMO energy gaps, electronegativity values, and dipole moments, contributing to a deeper understanding of their electronic properties and potential reactivity. These findings provide valuable knowledge for the development of APNs (1-6) as fluorescent sensors and potential anticancer agents.


Antineoplastic Agents , Nitriles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Nitriles/chemistry , Nitriles/chemical synthesis , Nitriles/pharmacology , Cell Line, Tumor , Quantum Theory , Molecular Structure , Spectrometry, Fluorescence , MCF-7 Cells , Cell Survival/drug effects
3.
Bioorg Med Chem Lett ; 106: 129757, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38636718

9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.


Spectrum Analysis, Raman , Molecular Structure , Vibration , Nitriles/chemistry , Nitriles/chemical synthesis
4.
Yakugaku Zasshi ; 142(2): 139-144, 2022.
Article Ja | MEDLINE | ID: mdl-35110450

Deuterium (2H, D) is a stable isotope of hydrogen (1H). Deuterium-incorporated (labelled) compounds are widely utilized in various scientific fields such as mechanistic studies of organic reactions, elucidation of drug metabolism, application as tracers for microanalysis. Recently, development of heavy drugs and molecular imaging using techniques such as neutron scattering and Raman spectroscopy are spotlighted. We have developed various deuterium-incorporated compounds using D2O as an inexpensive deuterium source to construct novel functional materials. The use of platinum group metals on carbon as catalysts could result in the multi-deuteration of compounds in the mixed solvents of 2-propanol and D2O, and site-selectively deuterated compounds can be synthesized by organocatalytic methods. In this review, the latter deuteration methods using organocatalysts and their applications are summarized. Terminal alkynes smoothly underwent deuterium incorporation by using triethylamine as an organic base or a solid resin possessing the tertiary amine moiety in the same molecule to give mono-deuterated alkynes. These compounds were partially reduced over our prepared specific palladium catalyst under atmospheric D2 gas to produce tri-deuterated alkenes. Achiral or chiral di-deuterated ß-nitro alcohols were also prepared by the organic-base-catalyzed deuteration of nitromethane, followed by nitroaldol reactions in a one pot manner. The mono-deuteration of aromatic aldehyde could be effectively catalyzed by N-heterocyclic carbene. Furthermore, the α-deuteration of aliphatic aldehydes using a basic resin catalyst and the subsequent Knoevenagel condensation with malononitrile could provide γ-deuterium-incorporated α,ß-unsaturated nitrile derivatives. The deuterated compounds thus obtained can be important synthetic precursors to construct the deuterium-incorporated target functional materials.


Alkenes/chemical synthesis , Alkynes/chemistry , Alkynes/chemical synthesis , Chemistry, Organic/methods , Deuterium/chemistry , Drug Development/methods , Ethylamines/chemistry , 2-Propanol/chemistry , Amines/chemical synthesis , Carbon/chemistry , Catalysis , Gases , Methane/analogs & derivatives , Methane/chemistry , Molecular Imaging/methods , Nitriles/chemical synthesis , Nitriles/chemistry , Nitroparaffins/chemistry , Palladium/chemistry , Platinum/chemistry , Solvents
5.
J Med Chem ; 64(24): 18175-18192, 2021 12 23.
Article En | MEDLINE | ID: mdl-34905371

Human dihydroorotate dehydrogenase (hDHODH), as the fourth and rate-limiting enzyme of the de novo pyrimidine synthesis pathway, is regarded as an attractive target for malignancy therapy. In the present study, a novel series of teriflunomide derivatives were designed, synthesized, and evaluated as hDHODH inhibitors. 13t was the optimal compound with promising enzymatic activity (IC50 = 16.0 nM), potent antiproliferative activity against human lymphoma Raji cells (IC50 = 7.7 nM), and excellent aqueous solubility (20.1 mg/mL). Mechanistically, 13t directly inhibited hDHODH and induced cell cycle S-phase arrest in Raji cells. The acute toxicity assay indicated a favorable safety profile of 13t. Notably, 13t displayed significant tumor growth inhibition activity with a tumor growth inhibition (TGI) rate of 81.4% at 30 mg/kg in a Raji xenograft model. Together, 13t is a promising inhibitor of hDHODH and a preclinical candidate for antitumor therapy, especially for lymphoma.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crotonates/chemistry , Crotonates/pharmacology , Dihydroorotate Dehydrogenase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxybutyrates/chemistry , Hydroxybutyrates/pharmacology , Neoplasms/drug therapy , Nitriles/chemistry , Nitriles/pharmacology , Toluidines/chemistry , Toluidines/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Crotonates/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Humans , Hydroxybutyrates/chemical synthesis , Neoplasms/pathology , Nitriles/chemical synthesis , Structure-Activity Relationship , Toluidines/chemical synthesis
6.
Future Med Chem ; 13(24): 2167-2183, 2021 12.
Article En | MEDLINE | ID: mdl-34708659

Background: Schiff bases are synthetically accessible compounds that have been used in medicinal chemistry. Methods & results: In this work, 27 Schiff bases derived from diaminomaleonitrile were synthesized in high yields (80-98%). Molecular docking studies suggested that the Schiff bases interact with the catalytic site of cruzain. The most active cruzain inhibitor, analog 13 (IC50 = 263 nM), was predicted to form an additional hydrophobic contact with Met68 in the binding site of the enzyme. A strong correlation between the IC50 values and ChemScore binding energies was observed (R = 0.99). Kernel-based 2D quantitative structure-activity relationship models for the whole dataset yielded sound correlation coefficients (R2 = 0.844; Q2 = 0.719). Conclusion: These novel and potent cruzain inhibitors are worthwhile starting points in further Chagas disease drug discovery programs.


Chagas Disease/drug therapy , Diamines/pharmacology , Nitriles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Diamines/chemical synthesis , Diamines/chemistry , Molecular Docking Simulation , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Quantitative Structure-Activity Relationship , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
7.
Arch Pharm (Weinheim) ; 354(11): e2100177, 2021 Nov.
Article En | MEDLINE | ID: mdl-34347303

6-Thienylpyrimidine-5-carbonitrile derivatives were synthesized and screened for their in vitro antiproliferative activities against two human breast cancer cell lines in comparison to 5-fluorouracil as a reference. Compounds 2, 3a-c, and 6b evolved as the most active congeners against both cell lines, while others showed selectivity for only one cell line. Compound 2 exerted its effect through inhibition of the epidermal growth factor receptor (EGFR), while 6b showed less aromatase inhibitory activity than letrozole. The rest of the tested compounds did not show significant inhibition, and it can be assumed that they exert their antiproliferative activity through different target mechanisms. In addition, caspase-9 protein activation assays, cell cycle analysis using flow cytometry, and annexin V-fluorescein isothiocyanate-propidium iodide (FITC/PI) dual staining assays were performed for the most active compounds. All the tested compounds were found to be potent pyrimidine derivatives able to initiate apoptosis in MCF-7 and MDA-MB-231 cells.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Nitriles/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Fluorouracil/pharmacology , Humans , MCF-7 Cells , Nitriles/chemical synthesis , Nitriles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
8.
Anal Bioanal Chem ; 413(25): 6343-6353, 2021 Oct.
Article En | MEDLINE | ID: mdl-34378069

A solvent-assisted ESIPT fluorescent dye was synthesized and used as a probe (2-PPN) for the detection of F-/Ag+ and high-resolution imaging of the cilia in live cells. The developed ESIPT fluorophore exhibited strong tautomeric fluorescence in protic solvents and normal emission in aprotic solvents, which is a significant departure from that of conventional intramolecular ESIPT compounds. The H-binding interaction of F- and the chelation of Ag+ with the ESIPT module of 2-PPN resulted in significant tautomeric emission quenching. From this basis, the 2-PPN-based assays for the detection of F- and Ag+ were established. The detection limit for F- and Ag+ sensing is 2.4 nM and 1.5 nM, respectively. The selective experimental results showed that no tautomeric fluorescence change of 2-PPN could be observed in the presence of the other inorganic ions in the same medium, revealing high selectivity of 2-PPN to F- and Ag+. Furthermore, MTT assay experiments proved that the probe 2-PPN exhibited low cytotoxicity and good cell membrane permeability. The probe was also further successfully utilized to image the cilia in vitro MCF7 cells, displaying its high-resolution imaging performance.Graphical abstract.


Cilia , Fluorescent Dyes/chemical synthesis , Fluorine/chemistry , Nitriles/chemical synthesis , Pyrenes/chemical synthesis , Silver/chemistry , Fluorescent Dyes/chemistry , Humans , MCF-7 Cells , Molecular Structure , Nitriles/chemistry , Pyrenes/chemistry
9.
Molecules ; 26(15)2021 Jul 24.
Article En | MEDLINE | ID: mdl-34361620

Nitriles comprise a broad group of chemicals that are currently being industrially produced and used in fine chemicals and pharmaceuticals, as well as in bulk applications, polymer chemistry, solvents, etc. Aldoxime dehydratases catalyze the cyanide-free synthesis of nitriles starting from aldoximes under mild conditions, holding potential to become sustainable alternatives for industrial processes. Different aldoxime dehydratases accept a broad range of aldoximes with impressive high substrate loadings of up to >1 Kg L-1 and can efficiently catalyze the reaction in aqueous media as well as in non-aqueous systems, such as organic solvents and solvent-free (neat substrates). This paper provides an overview of the recent developments in this field with emphasis on strategies that may be of relevance for industry and sustainability. When possible, potential links to biorefineries and to the use of biogenic raw materials are discussed.


Green Chemistry Technology/methods , Hydro-Lyases/chemistry , Nitriles/chemical synthesis , Biocatalysis
10.
J Enzyme Inhib Med Chem ; 36(1): 1488-1499, 2021 Dec.
Article En | MEDLINE | ID: mdl-34227457

New cyanobenzofurans derivatives 2-12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17-8.87 and 5.5-11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08-23.67 µM), HCT-116 (IC50 = 8.81-13.85 µM), and MCF-7 (IC50 = 8.36-17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81-1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.


Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
11.
Org Lett ; 23(14): 5501-5505, 2021 07 16.
Article En | MEDLINE | ID: mdl-34228456

A highly efficient, direct C(sp3)-H cyanation was developed under mild photocatalytic conditions. The method enabled the direct cyanation of various C(sp3)-H substrates with excellent functional group tolerance. Notably, complex natural products and bioactive compounds were efficiently cyanated.


Biological Products/chemistry , Nitriles/chemical synthesis , Catalysis , Molecular Structure , Nitriles/chemistry
12.
Chem Commun (Camb) ; 57(56): 6863-6866, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-34132258

We report the use of 3-substituted 2-isocyanopyridines as convertible isocyanides in Ugi four-component reactions. The N-(3-substituted pyridin-2-yl)amide Ugi products can be cleaved by amines, alcohols, and water with Zn(OAc)2 as a catalyst. In addition, the applicability of the method was demonstrated in constrained di-/tripeptides bearing acid and base sensitive protective groups obtained via Ugi-4CR post-condensation modifications.


Nitriles/chemistry , Peptidomimetics/chemical synthesis , Pyridines/chemistry , Molecular Structure , Nitriles/chemical synthesis , Pyridines/chemical synthesis
13.
Arch Pharm (Weinheim) ; 354(10): e2100151, 2021 Oct.
Article En | MEDLINE | ID: mdl-34173255

Aromatic scaffolds are an important part of biologically active compounds and molecular probes used to study biochemical pathways and the involved targeted proteins of interest. 1-Oxo-1H-phenalene-2,3-dicarbonitrile-based compounds have been described as inhibitors of the BCL-2 family of proteins, and this core structure represents numerous possibilities for modifications that could lead to improved inhibitory potencies. Many studies demonstrated intriguing characteristics of these compounds in terms of reactivity and, interestingly, some contradictory literature reports appeared about reaction outcomes to synthesize them. Here, we initially provide a condensed overview of transformations performed on the phenalene scaffold, followed by the resynthesis of a 6-phenoxy-substituted derivative. We show that the initial determination of this particular structure was wrong and provide two-dimensional nuclear magnetic resonance (NMR) evidence to assign the structure properly. When preparing new derivatives using the same synthetic route, we observed 6- and 7-substituted regioisomers. After confirming their structures by NMR experiments, the ability of these compounds to inhibit BCL-2 was evaluated. The most potent 1-oxo-1H-phenalene-2,3-dicarbonitrile derivatives inhibited BCL-2 in the nanomolar range and showed double-digit micromolar cytotoxicity against four different cancer cell lines.


Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Nitriles/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy , Neoplasms/pathology , Nitriles/chemical synthesis , Nitriles/chemistry , Structure-Activity Relationship
14.
J Am Chem Soc ; 143(19): 7219-7236, 2021 05 19.
Article En | MEDLINE | ID: mdl-33880920

Solar radiation is the principal source of energy available to Earth and has unmatched potential for the synthesis of organic material from primordial molecular building blocks. As well as providing the energy for photochemical synthesis of (proto)biomolecules of interest in origins of life-related research, light has also been found to often provide remarkable selectivity in these processes, for molecules that function in extant biology and against those that do not. As such, light is heavily implicated as an environmental input on the nascent Earth that was important for the emergence of complex yet selective chemical systems underpinning life. Reactivity and selectivity in photochemical prebiotic synthesis are discussed, as are their implications for origins of life scenarios and their plausibility, and the future directions of this research.


Nitriles/chemical synthesis , Origin of Life , Ultraviolet Rays , Earth, Planet , Nitriles/chemistry , Photochemical Processes , Solar Energy
15.
Int J Biol Macromol ; 182: 722-729, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33862074

Designing of eco-friendly, low cost, and thermally stable stabilizing/supporting agents are always desired for production of catalyst systems which provide good catalytic performance in organic reactions. In this study, a novel, green, and efficient stabilizer containing chitosan/Co3O4 microspheres (CS/Co3O4) was developed. Palladium nanoparticles (Pd NPs) were then successfully immobilized on CS/Co3O4 as a heterogeneous nanocatalyst (Pd NPs/CS/Co3O4). Characterization of the designed materials were performed by FT-IR, TEM, FE-SEM, XRD, and EDS and it was determined that Pd NPs formed as approximately 20 nm. Catalytic behavior of Pd NPs/CS/Co3O4 was investigated in the production of different substituted benzonitriles via aryl halide cyanation. Catalytic studies indicate that electron-rich or poor aromatic halides were smoothly cyanated with good reaction yields by Pd NPs/CS/Co3O4 nanocatalyst by using K4[Fe(CN)6] as the cyanating agent. Moreover, it was found that Pd NPs/CS/Co3O4 nanocatalyst provided not only good reaction yields and but also good recovery/reusability for six times in the aryl halide cyanations. This paper displays that Pd NPs/CS/Co3O4 nanocatalyst has a great catalytic and recycling potential for aryl halide cyanations.


Chitosan/analogs & derivatives , Cobalt/chemistry , Nanoparticles/chemistry , Nitriles/chemical synthesis , Oxides/chemistry , Palladium/chemistry , Catalysis , Microspheres
16.
Org Biomol Chem ; 19(15): 3462-3468, 2021 04 26.
Article En | MEDLINE | ID: mdl-33899877

A simple, efficient, and transition metal-free approach to synthesize functionalized 2-(alkynyl)benzonitriles has been developed using suitably functionalized 2H-pyran-2-ones and 4-phenyl/trimethylsilanyl-but-3-yn-2-ones as precursors. The reaction proceeds in the presence of a base at room temperature to yield internal as well as terminal alkynes. The structure of the synthesized compound was confirmed by single-crystal X-ray analysis. The molecular docking study was performed to evaluate the binding mode of action of newly synthesized alkyne derivatives with known human breast cancer target receptor aromatase (PDB ID: 3EQM).


Aromatase/metabolism , Molecular Docking Simulation , Nitriles/metabolism , Aromatase/chemistry , Breast Neoplasms/enzymology , Female , Humans , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry
17.
Carbohydr Res ; 502: 108282, 2021 Apr.
Article En | MEDLINE | ID: mdl-33761407

The conversion of an aldehyde into a nitrile can be efficiently performed using O-phenylhydroxylamine hydrochloride in buffered aqueous solutions. The reported method is specifically optimized for aqueous-soluble substrates including carbohydrates. Several reducing sugars including monosaccharides, disaccharides, and silyl-protected saccharides were transformed into cyanohydrins in high yields. The reaction conditions are also suitable for the formation of nitriles from various types of hydrophobic aldehyde substrates. Furthermore, cyanide can be eliminated from cyanohydrins, analogous to the Wohl degradation, by utilizing a readily-removed weakly basic resin as a promoter.


Aldehydes/chemistry , Hydroxylamines/chemistry , Nitriles/chemical synthesis , Molecular Structure , Nitriles/chemistry , Water/chemistry
18.
Angew Chem Int Ed Engl ; 60(16): 9093-9098, 2021 04 12.
Article En | MEDLINE | ID: mdl-33543534

Pyroptosis as a lytic and inflammatory form of cell death is a powerful tool to fight against cancer. However, pyroptosis is usually activated by chemotherapeutic drugs, which limits its anti-tumor applications due to drug resistance and severe side effects. Herein, we demonstrate that membrane targeting photosensitizers can induce pyroptosis for cancer cell ablation with noninvasiveness and low side effects. A series of membrane anchoring photosensitizers (TBD-R PSs) with aggregation-induced emission (AIE) characteristics were prepared through conjugation of TBD and phenyl ring with cationic chains. Upon light irradiation, cytotoxic ROS were produced in situ, resulting in direct membrane damage and superior cancer cell ablation. Detailed study revealed that pyroptosis gradually became the dominant cell death pathway along with the increase of TBD-R PSs membrane anchoring capability. This study offers a photo-activated pyroptosis-based intervention strategy for cancer cell ablation.


Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Pyroptosis/drug effects , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Drug Screening Assays, Antitumor , Humans , Mice , Nitriles/chemical synthesis , Nitriles/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism
19.
Bioorg Med Chem Lett ; 36: 127817, 2021 03 15.
Article En | MEDLINE | ID: mdl-33513386

The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castration-resistant forms. In this study, a series of sulfoxide derivatives were prepared and their antiproliferative activity evaluated in vitro against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and enzalutamide were used as positive controls. Compound 28 displayed significant enhancement in anticancer activity across the four PC cell lines with IC50 = 9.09 - 31.11 µM compared to the positive controls: bicalutamide (IC50 = 45.20 -51.61 µM) and enzalutamide (IC50 = 11.47 - 53.04 µM). Sulfoxide derivatives of bicalutamide were prepared efficiently from the corresponding sulfides using only one equivalent of mCPBA, limiting the reaction time to 15-30 min and maintaining the temperature at 0 °C. Interestingly, three pairs of sulfoxide diastereomers were separated and NMR comparison of their diastereotopic methylene (CH2) group is presented. X-ray diffraction crystal structure analysis provided relative configuration assignment at the chiral sulfur and carbon centres. Molecular modelling study of the four diastereoisomers of compound 28 is described.


Anilides/pharmacology , Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Prostatic Neoplasms/drug therapy , Sulfoxides/pharmacology , Tosyl Compounds/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Sulfoxides/chemical synthesis , Sulfoxides/chemistry , Tosyl Compounds/chemical synthesis , Tosyl Compounds/chemistry
20.
ACS Appl Bio Mater ; 4(2): 1942-1949, 2021 02 15.
Article En | MEDLINE | ID: mdl-35014463

Optical imaging in the second near-infrared (NIR-II) windows reduces much more autofluorescence and photon scattering from biological tissues and allows further tissue penetration depth and superior spatial resolution in living bodies. Herein, a fused-ring 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2,″3″:4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (TPBT) molecule was explored as a multifunctional tumor theranostic reagent for photothermal/photodynamic therapy guided by NIR-II imaging. The TPBT molecule has an electron-deficient core with a ladder-type multi-fused ring and shows a narrow band gap that can enhance the near-infrared absorption. The J-aggregative TPBT NPs were formed by nanoprecipitation with great bathochromic shift in absorption and emission spectra, which endows them with ideal fluorescence imaging ability in the NIR-II region. Moreover, TPBT NPs present both higher photothermal conversion efficiency (∼36.5%) and effective ROS generation ability, making them excellent candidate for cancer photothermal/photodynamic therapy. Moreover, the biocompatible TPBT NPs can effectively passively target tumor sites due to their enhanced permeability and retention effect for more precision treatment. Thus, TPBT NPs as a multifunctional phototheranostic agent in the NIR-II region present promising potential in clinical cancer NIR-II imaging-guided phototherapy.


Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Nanoparticles/chemistry , Nitriles/pharmacology , Optical Imaging , Photochemotherapy , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Survival/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Infrared Rays , Lasers , Materials Testing , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Particle Size , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Theranostic Nanomedicine
...