Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.278
1.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38691935

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Ferrous Compounds , Nitrobenzenes , Anaerobiosis , Nitrobenzenes/metabolism , Nitrobenzenes/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Wastewater/chemistry , Bioreactors
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38473762

Metal-free catalysts based on nitrogen-doped porous carbons were designed and synthesized from mixtures of melamine as nitrogen and carbon sources and calcium citrate as carbon source and porogen system. Considering the physicochemical and textural properties of the prepared carbons, a melamine/citrate ratio of 2:1 was selected to study the effect of the pyrolysis temperature. It was observed that a minimum pyrolysis temperature of 750 °C is required to obtain a carbonaceous structure. However, although there is a decrease in the nitrogen amount at higher pyrolysis temperatures, a gradual development of the porosity is produced from 750 °C to 850 °C. Above that temperature, a deterioration of the carbon porous structure is produced. All the prepared carbon materials, with no need for a further activation treatment, were active in the hydrogenation reaction of 1-chloro-4-nitrobenzene. A full degree of conversion was reached with the most active catalysts obtained from 2:1 melamine/citrate mixtures pyrolyzed at 850 °C and 900 °C, which exhibited a suitable compromise between the N-doping level and developed mesoporosity that facilitates the access of the reactants to the catalytic sites. What is more, all the materials showed 100% selectivity for the hydrogenation of the nitro group to form the corresponding chloro-aniline.


Carbon , Metals , Nitrobenzenes , Hydrogenation , Carbon/chemistry , Nitrogen/chemistry , Citrates
3.
J Chromatogr A ; 1717: 464707, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38310703

Detecting trace endocrine disruptors in water is crucial for evaluating the water quality. In this work, a innovative modified polyacrylonitrile@cyanuric chloride-triphenylphosphine nanofiber membrane (PAN@CC-TPS) was prepared by in situ growing triazine porous organic polymers on the polyacrylonitrile (PAN) nanofibers, and used in the dispersive solid phase extraction (DSPE) to enrich trace nitrobenzene phenols (NPs) in water. The resluted PAN@CC-TPS nanofiber membrane consisted of numerous PAN nanofibers cover with CC-TPS solid spheres (∼2.50 µm) and owned abundant functional groups, excellent enrichment performance and good stability. In addition, the method based on PAN@CC-TPS displayed outstanding capacity in detecting the trace nitrobenzene phenols, with 0.50-1.00 µg/L of the quantification, 0.10-0.80 µg/L of the detection limit, 85.35-113.55 % of the recovery efficiency, and 98.08-103.02 of the enrichment factor, which was comparable to most materials. Meanwhile, when PAN@CC-TPS was adopted in the real water samples (sea water and river water), the high enrichment factors and recovery percentages strongly confirmed the feasibility of PAN@CC-TPS for enriching and detecting the trace NPs. Besides, the related mechanism of extracting NPs on PAN@CC-TPS mainly involved the synergistic effect of hydrogen bonding, π-π stacking and hydrophobic effect.


Nanofibers , Nitrophenols , Organophosphorus Compounds , Nanofibers/chemistry , Porosity , Polymers , Solid Phase Extraction/methods , Phenols/analysis , Antifungal Agents , Triazines/chemistry , Nitrobenzenes , Limit of Detection , Chromatography, High Pressure Liquid/methods
5.
ACS Appl Mater Interfaces ; 16(4): 4493-4504, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38253428

Cervical cancer screening is a crucial field of femtech (female technology). In this work, we disclosed a new femtech solution─a simple, straightforward, and on-site applicable urine-based cervical cancer diagnostic method using a fluorescent biothiol probe. Our newly developed nitrobenzene-based fluorescent probe, named NPS-B, effectively differentiates between cysteine and homocysteine within urine samples via controlled Smiles rearrangement. The analysis of emission-based signals offers the potential utility of this method in cervical cancer. NPS-B was designed by considering the substitution effect and structural polarity of the nitrobenzene-based fluorophore. This controlled modification of nitrobenzene-induced substantial intramolecular charge transfer changes in the fluorophore when exposed to biothiols, resulting in significant changes in photophysical properties. NPS-B displayed different emissions of cysteine and homocysteine in clinical human urine (without prior urine treatment). Overall, our findings provide insights not only into fundamental chemical science but also into the broader domain of applied sciences.


Cysteine , Uterine Cervical Neoplasms , Female , Humans , Cysteine/chemistry , Fluorescent Dyes/chemistry , Uterine Cervical Neoplasms/diagnosis , Early Detection of Cancer , Glutathione/chemistry , Homocysteine , Nitrobenzenes , Spectrometry, Fluorescence/methods
6.
ACS Sens ; 9(1): 251-261, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38207113

Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.


Volatile Organic Compounds , Volatile Organic Compounds/analysis , Metals , Luminescence , Toluene , Nitrobenzenes
7.
Respir Res ; 25(1): 35, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238712

BACKGROUND: This study aimed to investigate the interactions among three core elements of respiratory infection-pathogen, lung microbiome, and host response-and their avocation with the severity and outcomes of Mycoplasma pneumoniae pneumonia (MPP) in children. METHODS: We prospectively collected bronchoalveolar lavage fluid from a cohort of 41 children with MPP, including general MPP (GMPP) and complicated MPP (CMPP), followed by microbiome and transcriptomic analyses to characterize the association among pathogen, lung microbiome, and host response and correlate it with the clinical features and outcomes. RESULTS: The lung microbiome of patients with CMPP had an increased relative abundance of Mycoplasma pneumoniae (MP) and reduced alpha diversity, with 76 differentially expressed species. Host gene analysis revealed a key module associated with neutrophil function and several inflammatory response pathways. Patients with a high relative abundance of MP, manifested by a specific lung microbiome and host response type, were more prone to CMPP and had a long imaging recovery time. CONCLUSION: Patients with CMPP have a more disrupted lung microbiome than those with GMPP. MP, lung microbiome, and host response interacts with each other and are closely related to disease severity and outcomes in children with MPP.


Mycoplasma pneumoniae , Nitrobenzenes , Organophosphorus Compounds , Pneumonia, Mycoplasma , Child , Humans , Mycoplasma pneumoniae/genetics , Transcriptome , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/genetics , Lung
8.
Comput Biol Med ; 169: 107880, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211383

It is challenging to model the toxicity of nitroaromatic compounds due to limited experimental data. Nitrobenzene derivatives are commonly used in industry and can lead to environmental contamination. Extensive research, including several QSPR studies, has been conducted to understand their toxicity. Predictive QSPR models can help improve chemical safety, but their limitations must be considered, and the molecular factors affecting toxicity should be carefully investigated. The latest QSPR methods, molecular modeling techniques, machine learning algorithms, and computational chemistry tools are essential for developing accurate and robust models. In this work, we used these methods to study a series of fifty compounds derived from nitrobenzene. The Monte Carlo approach was used for QSPR modeling by applying the SMILES molecular structure representation and optimal molecular descriptors. The correlation ideality index (CII) and correlation contradiction index (CCI) were further introduced as validation parameters to estimate the developed models' predictive ability. The statistical quality of the CII models was better than those without CII. The best QSPR model with the following statistical parameters (Split-3): (R2 = 0.968, CCC = 0.984, IIC = 0.861, CII = 0.979, Q2 = 0.954, QF12 = 0.946, QF22 = 0.938, QF32 = 0.947, Rm2 = 0.878, RMSE = 0.187, MAE = 0.151, FTraining = 390, FInvisible = 218, FCalibration = 240, RTest2 = 0.905) was selected to generate the studied promoters with increasing and decreasing activity.


Tetrahymena pyriformis , Models, Molecular , Nitrobenzenes , Monte Carlo Method , Quantitative Structure-Activity Relationship
9.
Pediatr Blood Cancer ; 71(4): e30887, 2024 Apr.
Article En | MEDLINE | ID: mdl-38291721

PURPOSE: To determine whether percutaneous core needle biopsy (PCNB) is adequate for the diagnosis and full molecular characterization of newly diagnosed neuroblastoma. MATERIALS AND METHODS: Patients with newly diagnosed neuroblastoma who underwent PCNB in interventional radiology at a single center over a 5-year period were included. Pre-procedure imaging and procedure details were reviewed. Rates of diagnostic success and sufficiency for International Neuroblastoma Pathology Classification (INPC), risk stratification, and evaluation of genomic markers utilized in the Children's Oncology Group risk stratification, and status of the anaplastic lymphoma kinase (ALK) gene were assessed. RESULTS: Thirty-five patients (13 females, median age 2.4 years [interquartile range, IQR: 0.9-4.4] and median weight 12.4 kg [IQR: 9.6-18]) were included. Most had International Neuroblastoma Risk Group Stage M disease (n = 22, 63%). Median longest axis of tumor target was 8.8 cm [IQR: 6.1-12]. A 16-gauge biopsy instrument was most often used (n = 20, 57%), with a median of 20 cores [IQR: 13-23] obtained. Twenty-five specimens were assessed for adequacy, and 14 procedures utilized contrast-enhanced ultrasound guidance. There were two post-procedure bleeds (5.7%). Thirty-four of 35 procedures (97%) were sufficient for histopathologic diagnosis and risk stratification, 94% (n = 32) were sufficient for INPC, and 85% (n = 29) were sufficient for complete molecular characterization, including ALK testing. Biologic information was otherwise obtained from bone marrow (4/34, 12%) or surgery (1/34, 2.9%). The number of cores did not differ between patients with sufficient versus insufficient biopsies. CONCLUSION: In this study, obtaining multiple cores with PCNB resulted in a high rate of diagnosis and successful molecular profiling for neuroblastoma.


Neuroblastoma , Nitrobenzenes , Child , Female , Humans , Child, Preschool , Retrospective Studies , Biopsy/methods , Biopsy, Large-Core Needle , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Neuroblastoma/pathology , Risk Assessment , Receptor Protein-Tyrosine Kinases , Image-Guided Biopsy
10.
Cell Mol Immunol ; 21(1): 60-79, 2024 01.
Article En | MEDLINE | ID: mdl-38062129

The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.


Dioxanes , Immune Checkpoint Inhibitors , Immunosuppression Therapy , Lung Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Nitrobenzenes , Proto-Oncogene Proteins c-bcl-2 , Pyrroles , Tumor-Associated Macrophages , Animals , Mice , Dioxanes/pharmacology , Dioxanes/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Nitrobenzenes/pharmacology , Nitrobenzenes/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , Pyrroles/therapeutic use , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Transcription Factor RelA/metabolism , Tumor Microenvironment/drug effects , Cell Polarity/drug effects , Lung Neoplasms/drug therapy , Humans , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred C57BL , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Immunosuppression Therapy/methods
11.
Andrology ; 12(4): 899-917, 2024 May.
Article En | MEDLINE | ID: mdl-37772683

BACKGROUND: Acetaminophen and ibuprofen are widely administered to babies due to their presumed safety as over-the-counter drugs. However, no reports exist on the effects of cyclooxygenase inhibitors on undifferentiated spermatogonia and spermatogonial stem cells. Infancy represents a critical period for spermatogonial stem cell formation and disrupting spermatogonial stem cells or their precursors may be associated with infertility and testicular cancer formation. OBJECTIVES: The goal of this study was to examine the molecular and functional impact of cyclooxygenase inhibition and silencing on early steps of undifferentiated spermatogonia (u spg) and spermatogonial stem cell development, to assess the potential reproductive risk of pharmaceutical cyclooxygenase inhibitors. METHODS: The effects of cyclooxygenase inhibition were assessed using the mouse C18-4 undifferentiated juvenile spermatogonial cell line model, previously shown to include cells with spermatogonial stem cell features, by measuring prostaglandins, cell proliferation, and differentiation, using cyclooxygenase 1- and cyclooxygenase 2-selective inhibitors NS398, celecoxib, and FR122047, acetaminophen, and ibuprofen. Cyclooxygenase 1 gene silencing was achieved using a stable short-hairpin RNA approach and clone selection, then assessing gene and protein expression in RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence studies. RESULTS: Cyclooxygenase 2 inhibitors NS398 and celecoxib, as well as acetaminophen, but not ibuprofen, dose-dependently decreased retinoic acid-induced expression of the spg differentiation gene Stra8, while NS398 decreased the spg differentiation marker Kit, suggesting that cyclooxygenase 2 is positively associated with spg differentiation. In contrast, short-hairpin RNA-based cyclooxygenase 1 silencing in C18-4 cells altered cellular morphology and upregulated Stra8 and Kit, implying that cyclooxygenase 1 prevented spg differentiation. Furthermore, RNA sequencing analysis of cyclooxygenase 1 knockdown cells indicated the activation of several signaling pathways including the TGFb, Wnt, and Notch pathways, compared to control C18-4 cells. Notch pathway genes were upregulated by selective cyclooxygenase inhibitors, acetaminophen and ibuprofen. CONCLUSION: We report that cyclooxygenase 1 and 2 differentially regulate undifferentiated spermatogonia/spermatogonial stem cell differentiation. Cyclooxygenases regulate Notch3 expression, with the Notch pathway targeted by PGD2. These data suggest an interaction between the eicosanoid and Notch signaling pathways that may be critical for the development of spermatogonial stem cells and subsequent spermatogenesis, cautioning about using cyclooxygenase inhibitors in infants.


Nitrobenzenes , Spermatogonia , Sulfonamides , Testicular Neoplasms , Humans , Male , Animals , Mice , Spermatogonia/metabolism , Testicular Neoplasms/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/pharmacology , Cyclooxygenase 2/metabolism , Celecoxib/pharmacology , Celecoxib/metabolism , Ibuprofen/pharmacology , Acetaminophen , Spermatogenesis/physiology , Cell Differentiation/physiology , Cyclooxygenase Inhibitors/pharmacology , RNA/metabolism , Testis/metabolism
12.
Sci Total Environ ; 912: 168917, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38030013

Exposure to the organochlorine fungicide pentachloronitrobenzene (PCNB) causes developmental abnormalities, including cardiac malformation. However, the molecular mechanism of PCNB cardiotoxicity remains elusive. We found that oral administration of PCNB to pregnant mice induced a hypoplastic wall with significant thinning of the compact myocardium in the developing hearts. PCNB significantly downregulates the expression of Hec1, a member of the NDC80 kinetochore complex, resulting in aberrant spindles, chromosome missegregation and an arrest in cardiomyocyte proliferation. Cardiac-specific ablation of Hec1 sharply inhibits cardiomyocyte proliferation, leading to thinning of the compact myocardium and embryonic lethality. Mechanistically, we found that activating transcription factor 3 (ATF3) transactivates Hec1 expression. Either HEC1 or ATF3 overexpression significantly rescues mitotic defects and restore the decreased proliferative ability of cardiomyocytes caused by PCNB exposure. Our findings highlight that maternal PCNB exposure disrupts embryonic cardiac function by inhibiting cardiomyocyte proliferation and interfering with ventricular wall development, partially attributed to the downregulation of the Atf3-Hec1 axis.


Myocytes, Cardiac , Nitrobenzenes , Nuclear Proteins , Animals , Mice , Down-Regulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Proliferation
13.
Ultrasound Q ; 40(1): 1-19, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37918119

ABSTRACT: Percutaneous core-needle biopsy (PCNB) plays a growing and essential role in many medical specialties. Proper and effective use of various PCNB devices requires basic understanding of how they function. Current literature lacks a detailed overview and illustration of needle function and design differences, a potentially valuable reference for users ranging from early trainees to experts who are less familiar with certain devices. This pictorial aims to provide such an overview, using diagrams and magnified photographs to illustrate the intricate components of these devices. Following a brief historical review of biopsy needle technology for context, we emphasize distinctions in design between 2 major classes of PCNB devices (side- and end-cutting devices), focusing on practical implications for how each device is most effectively used. We believe a nuanced understanding of biopsy device function sheds light on certain lingering ambiguities in biopsy practice, such as the optimal needle gauge in organ biopsy, the benefits and risks associated with coaxial technique, the impact of needle selection and technique on bleeding, and the risk of unsuccessful sampling. In a subsequent pictorial, we will draw on the concepts presented here to illustrate examples of biopsy needle failure and how unrecognized needle failure can be an important and often preventable cause of increased biopsy risk and lower tissue yield.


Image-Guided Biopsy , Needles , Nitrobenzenes , Humans , Biopsy, Large-Core Needle , Biopsy
14.
Environ Sci Pollut Res Int ; 31(3): 4528-4538, 2024 Jan.
Article En | MEDLINE | ID: mdl-38102431

Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.


Nanospheres , Water Pollutants, Chemical , Oxidation-Reduction , Titanium/chemistry , Tin Compounds/chemistry , Electrodes , Nitrobenzenes , Water Pollutants, Chemical/chemistry
15.
Clin Radiol ; 79(3): e453-e461, 2024 Mar.
Article En | MEDLINE | ID: mdl-38160104

AIM: To establish an artificial neural network (ANN) model to predict subsolid nodules (SSNs) before percutaneous core-needle biopsy (PCNB). The results of the two methods were compared to provide guidance on the treatment of SSNs. MATERIALS AND METHODS: This was a single-centre retrospective study using data from 1,459 SSNs between 2013 and 2021. The ANN was developed using data from patients who underwent surgery following computed tomography (CT) (SFC) and validated using data from patients who underwent surgery following biopsy (SFB). The prediction results of the ANN for the PCNB group and the histopathological results obtained after biopsy were compared with the histopathological results of lung nodules in the same group after surgery. Additionally, the choice of predictors for PCNB was analysed using multivariate analysis. RESULTS: There was no significant difference between the accuracies of the ANN and PCNB in the SFB group (p=0.086). The sensitivity of PCNB was lower than that of the ANN (p=0.000), but the specificity was higher (p=0.001). PCNB had better diagnostic ability than the ANN. The incidence of precursor lesions and non-neoplastic lesions in the SFB group was lower than that in the SFC group (p=0.000). A history of malignant tumours, size (2-3 cm), volume (>400 cm3) and mean CT value (≥-450 HU) are important factors for selecting PCNB. CONCLUSIONS: Both ANN and PCNB have comparable accuracy in diagnosing SSNs; however, PCNB has a slightly higher diagnostic ability than ANN. Selecting appropriate patients for PCNB is important for maximising the benefit to SSN patients.


Lung Neoplasms , Nitrobenzenes , Tomography, X-Ray Computed , Humans , Retrospective Studies , Biopsy , Biopsy, Large-Core Needle , Tomography, X-Ray Computed/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology
16.
J Environ Sci (China) ; 138: 458-469, 2024 Apr.
Article En | MEDLINE | ID: mdl-38135411

In order to explore an efficient and green method to deal with nitrobenzene (NB) pollutant, reduced graphene oxide (rGO) as an electron shuttle was applied to enhance the extracellular electron transfer (EET) process of Geobacter sulfurreducens, which was a typical electrochemically active bacteria (EAB). In this study, rGO biosynthesis was achieved via the reduction of graphene oxide (GO) by G. sulfurreducens PCA within 3 days. Also, the rGO-PCA combining system completely reduced 50-200 µmol/L of NB to aniline as end product within one day. SEM characterization revealed that PCA cells were partly wrapped by rGO, and therefore the distance of electron transfer between strain PCA and rGO material was reduced. Beside, the ID/IG of GO, rGO, and rGO-PCA combining system were 0.990, 1.293 and 1.31, respectively. Moreover, highest currents were observed in rGO-PCA-NB as 12.950 µA/-12.560 µA at -408 mV/156 mV, attributing to the faster electron transfer efficiency in EET process. Therefore, the NB reduction was mainly due to: (I) direct EET process from G. sulfurreducens PCA to NB; (II) rGO served as electron shuttle and accelerated electron transfer to NB, which was the main degradation pathway. Overall, the biosynthesis of rGO via GO reduction by Geobacter promoted the NB removal process, which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.


Geobacter , Graphite , Graphite/chemistry , Nitrobenzenes/metabolism
17.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38139374

Catalysts with magnetic properties can be easily recovered from the reaction medium without loss by using a magnetic field, which highly improves their applicability. To design such systems, we have successfully combined the magnetic properties of nickel ferrite nanoparticles with the positive properties of carbon-based catalyst supports. Amine-functionalized NiFe2O4 nanoparticles were deposited on the surfaces of nitrogen-doped bamboo-like carbon nanotubes (N-BCNT) and carbon nanolayers (CNL) by using a coprecipitation process. The magnetizable catalyst supports were decorated by Pd nanoparticles, and their catalytic activity was tested through the hydrogenation of nitrobenzene (NB). By using the prepared catalysts, high nitrobenzene conversion (100% for 120 min at 333 K) and a high aniline yield (99%) were achieved. The Pd/NiFe2O4-CNL catalyst was remarkable in terms of stability during the reuse tests due to the strong interaction formed between the catalytically active metal and its support (the activity was retained during four cycles of 120 min at 333 K). Furthermore, despite the long-lasting mechanical stress, no significant palladium loss (only 0.08 wt%) was detected.


Nanotubes, Carbon , Nickel , Hydrogenation , Aniline Compounds , Nitrobenzenes
18.
Environ Sci Technol ; 57(48): 19827-19837, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37948669

Mackinawite (FeS) has gained increasing interest due to its potential application in contaminant removal by either reduction or oxidation processes. This study further demonstrated the efficiency of FeS in degrading nitrobenzene (ArNO2) via a sequential two-step reduction and oxidation process under neutral conditions. In the reduction stage, FeS rapidly reduced ArNO2 to aniline (ArNH2), with nitrosobenzene (ArNO) and phenylhydroxylamine (ArNHOH) serving as the intermediates. X-ray photoelectron spectroscopy (XPS) analysis indicated that both Fe(II) and S(II) in FeS contributed electrons to the reduction of ArNO2. In the subsequent oxidation stage with oxygen, by addition of 0.5 mM tripolyphosphate (TPP), ArNH2 generated in the reduction process could be effectively oxidized to aminophenols by hydroxyl radicals (•OH), which would undergo eventual mineralization via ring-cleavage reactions. TPP exerted a favorable role in enhancing •OH production for ArNH2 degradation by promoting the formation of the dissolved Fe(II)-TPP complex, thus enhancing the homogeneous Fenton reaction. Additionally, TPP adsorption inhibited the surface oxidation reactivity of FeS due to the change of Fe(II) coordination. Finally, the effective degradation of ArNO2 by FeS in actual groundwater was demonstrated by using this sequential reduction and oxidation approach. These research findings provide a theoretical basis for a new FeS-based remediation approach, offering an alternative way for comprehensive removal of ArNO2.


Ferrous Compounds , Hydroxyl Radical , Ferrous Compounds/chemistry , Oxidation-Reduction , Nitrobenzenes
19.
Environ Sci Pollut Res Int ; 30(54): 116202-116213, 2023 Nov.
Article En | MEDLINE | ID: mdl-37910358

This study reports the synthesis of (Cd0.4Ni0.4Mn0.2)Fe2-xRuxO4 nanoparticles (NPs), where x = 0.00, 0.005, 0.01, 0.015, 0.02, and 0.04, via co-precipitation method. The synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence (PL) spectroscopy. The results confirmed the purity of the samples with the presence of a very small fraction of the hematite phase. Pseudo-spherical morphology was recognized from TEM images. Then, the prepared samples were further used as effective photocatalysts for the degradation of nitrobenzene under UV irradiation to examine the effect of doping on the photocatalytic activity. Among the synthesized samples, (Cd0.4Ni0.4Mn0.2)Fe1.985Ru0.015O4 NPs exhibited superior photocatalytic activity. This result is in good agreement with photoluminescence (PL) analysis in which (Cd0.4Ni0.4Mn0.2)Fe1.985Ru0.015O4 NPs revealed the slowest recombination rate of the electron-hole pair. To further improve the photocatalytic performance, different weight % of graphene was incorporated with (Cd0.4Ni0.4Mn0.2)Fe1.985Ru0.015O4 NPs. Finally, 81.41% of nitrobenzene was degraded after 180 min in the presence of 5 wt% graphene/(Cd0.4Ni0.4Mn0.2)Fe1.985Ru0.015O4 nanocomposites, and the degradation rate constant was estimated as 8.4 × 10-3 min-1.


Graphite , Nanoparticles , Cadmium , Ultraviolet Rays , Nanoparticles/chemistry , Nitrobenzenes
20.
J Am Chem Soc ; 145(50): 27587-27600, 2023 12 20.
Article En | MEDLINE | ID: mdl-37996388

Photodynamic therapy (PDT) has been used to reduce cancerous and precancerous cells via reactive oxygen species (ROS) generation from photosensitizers. Numerous photosensitizers are available today to treat a variety of diseases, but their therapeutic efficacy is hindered within the tumor microenvironment, and there are safety concerns associated with their non-specific activation. In this work, we disclosed a nano-therapeutic based on in situ activatable nitrobenzene-cysteine-copper(II) nano-complexes (NCCNs) that work within cancer cells. Among the NCCNs, CyP shows outstanding potential as a promising candidate for programmed photodynamic cancer therapy with its unique properties such as (i) bright near-infrared imaging, (ii) chemodynamic therapeutic effect, (iii) photodynamic therapeutic effect (types I and II), and (iv) anti-cancer effect by anti-angiogenesis in early cancer stage under light. Overall, this work opens up exciting possibilities for the development of innovative and effective treatments for cancer, paving the way for future advancements in the clinical medicine field.


Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Copper/therapeutic use , Cysteine/therapeutic use , Photochemotherapy/methods , Neoplasms/drug therapy , Nitrobenzenes , Reactive Oxygen Species , Cell Line, Tumor , Tumor Microenvironment
...