Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.230
1.
Chemosphere ; 358: 142211, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697573

This paper investigates the effects of argon (Ar) and that of Ar mixed with ambient air (Ar-Air) cold plasma jets (CPJs) on 4-nitrophenol (4-NP) degradation using low input power. The introduction of ambient air into the Ar-Air plasma jet enhances ionization-driven processes during high-voltage discharge by utilizing nitrogen and oxygen molecules from ambient air, resulting in increased reactive oxygen and nitrogen species (RONS) production, which synergistically interacts with argon. This substantial generation of RONS establishes Ar-Air plasma jet as an effective method for treating 4-NP contamination in deionized water (DW). Notably, the Ar-Air plasma jet treatment outperforms that of the Ar jet. It achieves a higher degradation rate of 97.2% and a maximum energy efficiency of 57.3 gkW-1h-1, following a 6-min (min) treatment with 100 mgL-1 4-NP in DW. In contrast, Ar jet treatment yielded a lower degradation rate and an energy efficiency of 75.6% and 47.8 gkW-1h-1, respectively, under identical conditions. Furthermore, the first-order rate coefficient for 4-NP degradation was measured at 0.23 min-1 for the Ar plasma jet and significantly higher at 0.56 min-1 for the Ar-Air plasma jet. Reactive oxygen species, such as hydroxyl radical and ozone, along with energy from excited species and plasma-generated electron transfers, are responsible for CPJ-assisted 4-NP breakdown. In summary, this study examines RONS production from Ar and Ar-Air plasma jets, evaluates their 4-NP removal efficacy, and investigates the biocompatibility of 4-NP that has been degraded after plasma treatment.


Argon , Nitrophenols , Plasma Gases , Nitrophenols/chemistry , Argon/chemistry , Plasma Gases/chemistry , Air , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
2.
Int J Biol Macromol ; 268(Pt 1): 131752, 2024 May.
Article En | MEDLINE | ID: mdl-38657936

The present study reports the preparation of crystalline and nanosized copper ferrite (CuFe2O4), Y3+ substituted CuFe2O4 (CuFe1.95Y0.05O4), and Sm3+ substituted CuFe2O4 (CuFe1.95Sm0.05O4) using a simple co-precipitation method. The XRD analysis confirmed the formation of the cubic spinel phase, while XPS studies validated the presence of Cu and Fe in 2+ and 3+ oxidation states respectively. Transmission electron microscopy (TEM) analysis revealed the nanoparticles with a diameter in the range of 10-60 nm. The introduction of fractional amounts of Y3+ and Sm3+ ions in the CuFe2O4 lattice enhanced the reduction of 4-nitrophenol, attributed to decreased particle size facilitating the reduction process. In the case of antimicrobial activity, Candida albican was found to be maximally sensitive to CuFe2O4 and CuFe1.95Y0.05O4, while Pseudomonas aeruginosa was inhibited by CuFe1.95Sm0.05O4. Moreover, a maximum of 61.9 ± 1.91 % anti-Pseudomonas biofilm activity and 75.7 ± 1.28 % DPPH radical scavenging activity was observed for CuFe1.95Y0.05O4 at 200 µg/ml concentration. The improvement in biological activities was attributed to the reduced particle size, crystal structure modification, and increased stability of the CuFe2O4 lattice with substitution. The enhancement in catalytic and biological performance highlighted the effectiveness of minimal Y3+ and Sm3+ concentrations in modulating the properties of CuFe2O4 nanomaterials.


Copper , Ferric Compounds , Samarium , Yttrium , Copper/chemistry , Catalysis , Ferric Compounds/chemistry , Yttrium/chemistry , Samarium/chemistry , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Nanostructures/chemistry , Candida/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Nitrophenols/chemistry , Particle Size , Microbial Sensitivity Tests , Ferrous Compounds
3.
Chemosphere ; 357: 142037, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626811

In this study, a new catalyst for catalytic ozonation was obtained by in-situ growth of Mn-Ni3S2 nanosheets on the surface of nickel foam (NF). The full degradation of p-nitrophenol (PNP) was accomplished under optimal conditions in 40 min. The effects of material dosage, ozone dosage, pH and the presence of inorganic anions on the degradation efficiency of PNP were investigated. ESR analysis showed that singlet oxygen (1O2) and superoxide radical (O2•-) are the main contributors of PNP degradation. This study offers a new combination of supported catalysts with high efficiency and easy recovery, which provides a new idea for wastewater treatment.


Manganese , Nickel , Nitrophenols , Ozone , Water Pollutants, Chemical , Nickel/chemistry , Nitrophenols/chemistry , Catalysis , Ozone/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods
4.
Int J Biol Macromol ; 267(Pt 2): 131478, 2024 May.
Article En | MEDLINE | ID: mdl-38604434

In this study, an environmentally friendly, effective, easily synthesizable and recoverable nano-sized catalyst system (Ag@NaAlg-keratin) was designed by decorating Ag nanoparticles on microbeads containing sodium alginate (NaAlg) and keratin obtained from goose feathers. The structure, morphology and crystallinity of the Ag@NaAlg-keratin nanocatalyst were evaluated by XRD, FT-IR, FE-SEM, EDS/EDS mapping and TEM analyses. Catalytic ability of designed Ag@NaAlg-keratin nanocatalyst was then investigated against 4-nitrophenol (4-NP) and methyl orange (MO) reductions. Ag@NaAlg-keratin nanocatalyst effectively reduced 4-NP in 6 min and MO in 5 min, with rate constants of 0.17 min-1 and 0.16 min-1, respectively. Additionally, activation energies (Ea) were found as 39.8 kJ/mol for 4-NP and 37.9 kJ/mol for MO. Performed recyclability tests showed that the Ag@NaAlg-keratin nanocatalyst was easily recovered due to its microbead form and successfully reused five times, maintaining both its activity and structure. Furthermore, antioxidant activity of Ag@NaAlg-keratin nanocatalyst was the highest (73.16 %).


Alginates , Antioxidants , Keratins , Metal Nanoparticles , Microspheres , Silver , Alginates/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Keratins/chemistry , Catalysis , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Nitrophenols/chemistry , Feathers/chemistry , Azo Compounds/chemistry
5.
Biomacromolecules ; 25(5): 2803-2813, 2024 May 13.
Article En | MEDLINE | ID: mdl-38629692

The ability of bovine serum albumin (BSA) to form condensates in crowded environments has been discovered only recently. Effects of this condensed state on the secondary structure of the protein have already been unraveled as some aging aspects, but the pseudo-enzymatic behavior of condensed BSA has never been reported yet. This article investigates the kinetic profile of para-nitrophenol acetate hydrolysis by BSA in its condensed state with poly(ethylene) glycol (PEG) as the crowding agent. Furthermore, the initial BSA concentration was varied between 0.25 and 1 mM which allowed us to modify the size distribution, the volume fraction, and the partition coefficient (varying from 136 to 180). Hence, the amount of BSA originally added was a simple way to modulate the size and density of the condensates. Compared with dilute BSA, the initial velocity (vi) with condensates was dramatically reduced. From the Michaelis-Menten fits, the extracted Michaelis constant Km and the maximum velocity Vmax decreased in control samples without condensates when the BSA concentration increased, which was attributed to BSA self-oligomerization. In samples containing condensates, the observed vi was interpreted as an effect of diluted BSA remaining in the supernatants and from the condensates. In supernatants, the crowding effect of PEG increased the kcat and catalytic efficiency. Last, Vmax was proportional to the volume fraction of the condensates, which could be controlled by varying its initial concentration. Hence, the major significance of this article is the control of the size and volume fraction of albumin condensates, along with their kinetic profile using liquid-liquid phase separation.


Esterases , Polyethylene Glycols , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Kinetics , Polyethylene Glycols/chemistry , Esterases/metabolism , Esterases/chemistry , Hydrolysis , Nitrophenols/chemistry , Nitrophenols/metabolism , Animals , Cattle
6.
J Phys Chem B ; 128(19): 4809-4820, 2024 May 16.
Article En | MEDLINE | ID: mdl-38646680

We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.


Metal Nanoparticles , Platinum , Silver , Metal Nanoparticles/chemistry , Catalysis , Platinum/chemistry , Silver/chemistry , Oxidation-Reduction , Polyurethanes/chemistry , Nitrophenols/chemistry , Particle Size , Aminophenols/chemistry
7.
Biomater Sci ; 12(10): 2639-2647, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563394

Triple negative breast cancer (TNBC) exhibits limited responsiveness to immunotherapy owing to its immunosuppressive tumor microenvironment (TME). Here, a reactive oxygen species (ROS)-labile nanodrug encapsulating the photosensitizer Ce6 and Bcl-2 inhibitor ABT-737 was developed to provoke a robust immune response via the synergistic effect of photodynamic therapy (PDT) and the reversal of apoptosis resistance. Upon exposure to first-wave near-infrared laser irradiation, the generated ROS triggers PEG cleavage, facilitating the accumulation of the nanodrug at tumor region and endocytosis by tumor cells. Further irradiation leads to the substantial generation of cytotoxic ROS, initiating an immunogenic cell death (ICD) cascade, which prompts the maturation of dendritic cells (DCs) as well as the infiltration of T cells into the tumor site. Meanwhile, Bcl-2 inhibition counteracts apoptosis resistance, thereby amplifying PDT-induced ICD and bolstering antitumor immunity. As a result, the ROS-sensitive nanodrug demonstrates a potent inhibitory effect on tumor growth.


Apoptosis , Biphenyl Compounds , Immunotherapy , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Sulfonamides , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Humans , Apoptosis/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Female , Reactive Oxygen Species/metabolism , Animals , Mice , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Chlorophyllides , Cell Line, Tumor , Piperazines/pharmacology , Piperazines/chemistry , Nitrophenols/pharmacology , Nitrophenols/chemistry , Nanoparticles/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
Chemosphere ; 356: 141930, 2024 May.
Article En | MEDLINE | ID: mdl-38593959

An important paradigm shift towards the circular economy is to prioritize waste prevention, reuse, recycling, and recovery before disposal is necessary. In this context, a sustainable protocol of converting waste pea peel (wPP) into low-cost carbon nanomaterials for sensing and conversion of p-nitrophenol (p-NP) into value-added paracetamol is being reported. Two fractions of the carbonaceous nanomaterials were obtained after the hydrothermal treatment (HT) of wPP, firstly an aqueous portion containing water-soluble carbon dots (wPP-CDs) and a solid residue, which was converted into carbonized biochar (wPP-BC). Blue-colored fluorescent wPP-CDs displayed excitation-dependent and pH-independent properties with a quantum yield (QY) of 8.82 %, which were exploited for the fluorescence sensing of p-NP with 4.20 µM limit of detection. Pyrolyzed biochar acting as an efficient catalyst effectively reduces p-NP to p-aminophenol (p-AP) in just 16 min with a 0.237 min-1 rate of conversion. Furthermore, the produced p-AP was converted into paracetamol, an analgesic and antipyretic drug, to achieve zero waste theory. Thus, this study provides the execution of sustainable approaches based on the integral valorization of biowaste that can be further recycled and reused, offering an effective way to attain a profitable circular economy.


Acetaminophen , Aminophenols , Charcoal , Nitrophenols , Pisum sativum , Acetaminophen/chemistry , Acetaminophen/analysis , Nitrophenols/chemistry , Charcoal/chemistry , Pisum sativum/chemistry , Carbon/chemistry , Nanostructures/chemistry , Catalysis , Quantum Dots/chemistry
9.
Chemistry ; 30(24): e202304367, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38377169

Carbonic Anhydrases (CAs) have been a target for de novo protein designers due to the simplicity of the active site and rapid rate of the reaction. The first reported mimic contained a Zn(II) bound to three histidine imidazole nitrogens and an exogenous water molecule, hence closely mimicking the native enzymes' first coordination sphere. Co(II) has served as an alternative metal to interrogate CAs due to its d7 electronic configuration for more detailed solution characterization. We present here the Co(II) substituted [Co(II)(H2O/OH-)]N(TRIL2WL23H)3 n+ that behaves similarly to native Co(II) substituted human-CAs. Like the Zn(II) analogue, the cobalt-derivative at slightly basic pH is incapable of hydrolyzing p-nitrophenylacetate (pNPA); however, as the pH is increased a significant activity develops, which at pH values above 10 eventually yields a catalytic efficiency that exceeds that of the [Zn(II)(OH-)]N(TRIL2WL23H)3 + peptide complex. X-ray absorption analysis is consistent with an octahedral species at pH 7.5 that converts to a 5-coordinate species by pH 11. UV-vis spectroscopy can monitor this transition, giving a pKa for the conversion of 10.3. We assign this conversion to the formation of a 5-coordinate Co(II)(Nimid)3(OH)(H2O) species. The pH dependent kinetic analysis indicates the maximal rate (kcat), and thus the catalytic efficiency (kcat/Km), follow the same pH profile as the spectroscopic conversion to the pentacoordinate species. This correlation suggests that the chemically irreversible ester hydrolysis corresponds to the rate determining process.


Carbonic Anhydrases , Cobalt , Esterases , Zinc , Zinc/chemistry , Cobalt/chemistry , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Hydrogen-Ion Concentration , Humans , Esterases/chemistry , Esterases/metabolism , Catalytic Domain , Hydrolysis , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Kinetics , Catalysis , Nitrophenols/chemistry , Nitrophenols/metabolism
10.
Int J Biol Macromol ; 253(Pt 4): 126983, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37739284

In the current study, we successfully used strychnos potatorum polysaccharide through autoclaving to synthesize palladium nanoparticles in a green, sustainable process. These polysaccharide act as a stabilizing, capping, and reducing agent. It also used various analytical characterizations, including UV-Visible spectroscopy, FT-IR spectroscopy, X-Ray diffraction (XRD), Scanning electron microscopy (FE-SEM), EDAX, and X-ray photoelectron spectroscopy (XPS), TEM and gel permeation chromatography (GPC) are used to analyze biosynthesized pallidum nanoparticles (PdNPs). The surface plasmon resonance (SPR) band at 276 nm and UV-visible spectroscopy revealed the presence of the generated PdNPs. The XRD data show that PdNPs have crystalline behavior and a pristine face-centered cubic (FCC) structure. The PdNPs were successfully developed by catalytic reduction of 4-nitrophenol (4-NP). The catalytic activity and reusability of the environmentally friendly PdNPs catalyst were demonstrated by achieving a remarkable transformation of 95 % nitrophenol to 4-aminophenol after five cycles. The reaction rate constant (k) for the degradation of 4-nitrophenol (4-NP) using SP-PdNPs as a catalyst is 0.1201 min-1 and R2 0.9867, with a normalized rate constant of (Knor = K/m) of 7.206 s-1 mM-1. These findings provide fundamental knowledge of the catalytic process governing the hydrogenation of p-nitrophenol, which will help designers of effective catalysts. An innovative and affordable technique for creating PdNPs that are environmentally acceptable and can be utilized as effective catalysts in environmental applications is the use of strychnos potatorum gum polysaccharide. The green-synthesized PdNPs can be used for pollutant remediation, including pharmaceutical, domestic, heavy metal, industrial, and pesticide pollutants.


Metal Nanoparticles , Strychnos , Metal Nanoparticles/chemistry , Palladium/chemistry , Hydrogenation , Spectroscopy, Fourier Transform Infrared , Nitrophenols/chemistry , Catalysis , Polysaccharides
11.
Environ Sci Pollut Res Int ; 30(36): 85940-85952, 2023 Aug.
Article En | MEDLINE | ID: mdl-37395877

In the present work, we present the preparation of a new emerged heterogeneous catalyst (PE/g-C3N4/CuO) by in situ deposition of copper oxide nanoparticles (CuO) over the graphitic carbon nitride (g-C3N4) as the active catalyst and polyester (PE) fabric as the inert support. The synthesized sample (PE/g-C3N4/CuO) "dip catalyst" was studied by using various analytical techniques (Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy and dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy (TEM). The nanocomposite is utilized as heterogeneous catalysts for the 4-nitrophenol reduction in the presence of NaBH4, in aqueous solutions. According to experimental results, PE/g-C3N4/CuO with a surface of 6 cm2 (3 cm × 2 cm) demonstrated the catalyst exhibit excellent catalytic activity with 95% reduction efficiency for only 4 min of reaction and an apparent reaction rate constant (Kapp) of 0.8027 min-1. Further evidence that this catalyst based on prepared PE support can be a good contender for long-lasting chemical catalysis comes from the remarkable stability after 10 repetitions reaction cycles without a noticeably loss in catalytic activity. The novelty of this work consists to fabricate of catalyst based of CuO nanoparticles stabilized with g-C3N4 on the surface of an inert substrate PE, which results in an heterogenous dip-catalyst that can be easily introduced and isolated from the reaction solution with good retention of high catalytic performance in the reduction of 4-nitrophenol.


Nanoparticles , Nanoparticles/chemistry , Nitrophenols/chemistry , Catalysis
12.
Int J Biol Macromol ; 239: 124135, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-36965557

The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the synthesis of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.


Chitosan , Environmental Pollutants , Metal Nanoparticles , Chitosan/chemistry , Nitrophenols/chemistry , Nitro Compounds , Metals , Reducing Agents , Catalysis , Metal Nanoparticles/chemistry , Environmental Pollutants/chemistry
13.
Macromol Rapid Commun ; 44(11): e2200786, 2023 Jun.
Article En | MEDLINE | ID: mdl-36419340

In this work, a "thermally promoted homogenous-floating-concentrating" strategy is reported for the rapid synthesis of highly crystalline triazine/hydroxyl-rich COFs under mild conditions, using for the effectively adsorbing 4-nitrophenol (4-NP) in aqueous solutions. This strategy originates from an optimized "homogenous-floating-concentrating" method as reported in the previous work. Both gradually improving concentration and heat treatment promote the condensation reaction between amino and aldehyde groups, resulting in high crystallinity and shorter reaction time. The obtained COFs demonstrate better crystallinity and higher surface area in comparison with the counterparts prepared by solvothermal strategy. A maximum surface area of 2391 m2 g-1 is achieved. The COFs exhibit excellent 4-NP adsorption capacity (Qmax = 1402.0 mg g-1 ), which is attributed to abundant triazine/hydroxyl-groups on the COF skeleton and their strong H-bonding interaction with 4-NP.


Metal-Organic Frameworks , Nitrophenols , Triazines , Metal-Organic Frameworks/chemistry , Triazines/chemistry , Nitrophenols/chemistry , Adsorption
14.
Chemosphere ; 310: 136800, 2023 Jan.
Article En | MEDLINE | ID: mdl-36244421

Anisotropic gold nanostructures have attracted great attention in different fields including catalysis. Thermodynamically driven selective surface growth offers a reliable and reproducible method for anisotropic gold nanoparticle synthesis with specific morphologies. Herein, monocrystalline concave gold nano-arrows (AuCNAs) are prepared by the over-growth method using Au nanorods (AuNRs) as seeds. The as-prepared AuCNAs consist of a biconical head and four concave structures. Interestingly, silver ions (Ag+) concentration significantly affects the product morphology by tuning the peak positions of surface plasmon resonance (SPR), aspect ratio, arrow, and concave morphology of AuCNAs. The position of longitudinal SPR peaks is observed at 810, 805 and 782 nm at [Ag+]/[Au3+] molar ratios of 1:2, 1:1, and 2:1, respectively. Diameters and lengths of AuCNAs varied from 25 nm to 36 nm; 104 nm, 78 nm, and 120 nm, respectively. Additionally, the AuCNAs are applied for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in presence of excess NaBH4. Compared to gold nanorods (AuNRs), the prepared AuCNAs catalyst shows excellent catalytic activity, demonstrating that concave structures and sharp corners significantly enhance the catalytic activity. The value of pseudo-first-order reaction kinetic constants (kapp) increased from 0.0051 to 0.0195 s-1 with increasing catalyst valume from 7.5 to 37.5 µL. The highest normalized reaction rate constant (Knor) and turnover frequency (TOF) reach 5.84 × 104 min-1 mmol-1 and 443.47 h-1, respectively, at [Ag+]/[Au3+] ratio of 1:1 in AuCNAs catalyst. This study expands catalytic applications of anisotropic gold nanostructures and widens their potential application areas, such as surface plasmon exciton photonics, biomedical photonics, and photocatalysis.


Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Catalysis
15.
J Hazard Mater ; 443(Pt B): 130270, 2023 02 05.
Article En | MEDLINE | ID: mdl-36332280

Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.


Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Wood , Nitrophenols/chemistry
16.
Int J Biol Macromol ; 220: 954-963, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36007698

A green and facile method for preparation of Kappa-Carrageenan or Iota-Carrageenan grafted N,N'-methylenebisacrylamide/Fe3O4/Cu nanoparticles (κC-g-MBA/MNPs/Cu and ιC-g-MBA/MNPs/Cu) catalysts was developed to place copper on a magnetic carrageenan surface. The structure and morphology of the prepared catalysts were identified using FT-IR, XRD, BET, VSM, TGA, EDX, mapping, FE-SEM, TEM, and ICP-OES analyses. The catalytic activity of the catalysts was investigated to reduce 4-nitrophenol, 2-nitrophenol, 3-nitroaniline, and 4-nitroaniline compounds using the UV-Vis spectrum. To reduce 4-nitrophenol using κC-g-MBA/MNPs/Cu and ιC-g-MBA/MNPs/Cu, the rate constants (Kapp) obtained were 0.37 and 0.25 min-1, and the activity factors (k') were 134 and 193 s-1 g-1, respectively. The catalysts had a good performance in reducing the nitrophenol compounds and due to the magnetic properties of the catalysts, they could easily be separated and used multiple times.


Copper , Nanocomposites , Carrageenan , Copper/chemistry , Magnetic Phenomena , Nanocomposites/chemistry , Nitrophenols/chemistry , Spectroscopy, Fourier Transform Infrared
17.
Pak J Pharm Sci ; 35(3(Special)): 923-930, 2022 May.
Article En | MEDLINE | ID: mdl-35791589

We synthesized and explored biological and environmental applications of novel silver nanoparticles (AgNps) stabilized by short chain heterocyclic thiol namely Ethyl 6-methyl-4-phenyl-2-thioxo1,2,3,4-dihydropyrim-idine-5-carboxylate (DHPM). Dihydropyrimidines (DHPM), a biological active class of compounds that contain a single thiol group at the focal point which strongly stabilized the nascent AgNps. The short alkyl chain of (DHPM) effectively controlled the growth kinetics and surface morphology of AgNps. The synthesized Dihydropyrimidine stabilized silver nanoparticles (DHPM-AgNps) were investigated using Ultraviolet- visible spectroscopy (UV-Vis), Atomic force Microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM exhibited the size and shape of the DHPM-AgNps with an average diameter of 10 ± 1 nm. Our prepared DHPM-AgNps were examined for urease enzyme inhibition activity. The synthesized DHPM-AgNps showed significant level of urease inhibition activity (% of inhibition 40.3±0.28%) when compared with standard thiourea inhibition activity (% of inhibition value 79.6± 0.47%.). Moreover prepared DHPM-AgNps system successfully applied for the reduction of para-nitrophenol (p-Nip). It reduces the para-nitrophenol (p-Nip) to para-aminophenol (p-Amp) within one second in the presence of NaBH4 under ambient temperature and pressure conditions, which followed the pseudo-first-order rate kinetics. This study will provide useful guidelines for designing efficient catalysts and stabilizing agents for Silver Nanoparticles.


Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Silver/pharmacology , Sulfhydryl Compounds , Urease
18.
Environ Sci Pollut Res Int ; 29(38): 58110-58120, 2022 Aug.
Article En | MEDLINE | ID: mdl-35362884

In the present work, plasma remediation of p-nitrophenol (PNP) contaminated soil was performed in a novel spray-type coaxial cylindrical dielectric barrier discharge (DBD) system at ambient temperature. This system is capable of generating large-size nonthermal plasma (NTP) and improving the diffusion and transfer of chemical active species around the dispersed soil particles. Several key parameters including plasma treatment time, discharge voltage, soil granular size, the entry speed of soil, PNP initial concentration, gas variety, and gas flow rate were investigated in terms of PNP degradation and energy efficiencies. Under the optimized experimental conditions, 54.2% of PNP was degraded after only 50 s discharge treatment, indicating that the spray-type coaxial cylindrical DBD system can degrade organic pollutants in soil more quickly compared to other plasma systems due to its efficient transfer of reactive oxygen and nitrogen species (RONS) into the contaminated soil. The possible PNP degradation pathways were proposed based on intermediates identification results and the role of reactive species analysis. The toxicological assessment of the PNP decomposition products was conducted by quantitative structure-activity relationship (QASR) analysis. This work is expected to provide a potential plasma technology for rapid and efficient processing of industrial organic pollutants contamination soil.


Environmental Restoration and Remediation , Soil Pollutants , Nitrophenols/chemistry , Reactive Nitrogen Species , Soil/chemistry , Soil Pollutants/metabolism
19.
Chemosphere ; 301: 134518, 2022 Aug.
Article En | MEDLINE | ID: mdl-35395257

Nitrophenols(NPs) are highly toxic compounds that occur in various industrial effluents. Herein, we investigated Cu nanoparticle-loaded cellulose nanofibril (CNF/PEI-Cu) aerogels as a catalyst for degrading 4-nitrophenol (4NP) in the wastewater. Non-noble metal based low-cost catalyst material and easily scalable preparation method make CNF/PEI-Cu aerogel as an appropriate catalyst for practical application in 4NP wastewater treatment. Our strategy to improve the loading amount of homogeneously distributed Cu nanoparticles was to functionalize a CNF aerogel using polyethylene imine (PEI), which can bind Cu2+ ions. Porous CNF aerogels with homogenously distributed 20-40 nm Cu nanoparticles were obtained by adsorbing Cu2+ ions and chemically reducing them to Cu metal. The FTIR, XRD, SEM, XPS and ICP-OES analysis were used to confirm the in-situ formation of Cu nanoparticles. In the presence of the CNF/PEI-Cu aerogels, 4NP was effectively reduced to 4-aminophenol (4AP) without loss of the Cu nanoparticles. The activation energy (Ea) and reaction rate constant (kapp) of the catalytic 4NP reduction reaction by the CNF/PEI2-Cu aerogels were calculated to be Ea = 39.56 kJ mol-1 and kapp = 0.770 min-1, respectively. The Ea is similar or even smaller than the Ea values of the corresponding reactions involving noble-metal catalysts, demonstrating that the CNF/PEI-Cu aerogels developed in the present study have strong potential as practical and economical catalysts.


Cellulose , Metal Nanoparticles , Cellulose/chemistry , Copper/chemistry , Ions , Metal Nanoparticles/chemistry , Metals , Nitrophenols/chemistry , Porosity
20.
Environ Sci Pollut Res Int ; 29(40): 60953-60967, 2022 Aug.
Article En | MEDLINE | ID: mdl-35435545

Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB composites via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB composites exhibit efficient catalytic performance in reduction of 4-NP (rate constant kapp = 2.1925 min-1). The effects of SCB activated under different steam temperature, Au loading amount, pH, and reaction temperature and NaBH4 concentration were studied. The structural advantages of SCB as a platform were analyzed by various characterizations. Especially, the result of N2 adsorption-desorption method showed that steam activating process could bring higher surface area (from 185.9689 to 249.0053 m2/g), larger pore volume (from 0.073268 to 0.165246 cm3/g), and more micropore for SCB when compared with initial CB, demonstrating the suitable of SCB for Au NP anchoring, thus promoting the catalytic activity. This work contributes to the fabrication of other supported metal nanoparticle catalysts for preparing different functional nanocomposites for different applications.


Gold , Metal Nanoparticles , Catalysis , Charcoal , Gold/chemistry , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Soot , Steam
...