Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Fish Shellfish Immunol ; 149: 109566, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636735

Fish rely on innate immune system for immunity, and nucleotide-binding oligomerization domain-like receptors (NLRs) are a vital group of receptor for recognition. In the present study, NOD1 gene was cloned and characterized from golden pompano Trachinotus ovatus, a commercially important aquaculture fish species. The ORF of T. ovatus NOD1 was 2820 bp long, encoding 939 amino acid residues with a highly conserved domains containing CARD-NACHT-LRRs. Phylogenetic analysis revealed that the T. ovatus NOD1 clustered with those of fish and separated from those of birds and mammals. T. ovatus NOD1 has wide tissue distribution with the highest expression in gills. Bacterial challenges (Streptococcus agalactiae and Vibrio alginolyticus) significantly up-regulated the expression of NOD1 with different response time. The results of T. ovatus NOD1 ligand recognition and signaling pathway analysis revealed that T. ovatus NOD1 could recognize iE-DAP at the concentration of ≧ 100 ng/mL and able to activate NF-κB signaling pathway. This study confirmed that NOD1 play a crucial role in the innate immunity of T. ovatus. The findings of this study improve our understanding on the immune function of NOD1 in teleost, especially T. ovatus.


Amino Acid Sequence , Fish Diseases , Fish Proteins , Immunity, Innate , Nod1 Signaling Adaptor Protein , Phylogeny , Sequence Alignment , Vibrio alginolyticus , Animals , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/immunology , Nod1 Signaling Adaptor Protein/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Immunity, Innate/genetics , Fish Diseases/immunology , Sequence Alignment/veterinary , Vibrio alginolyticus/physiology , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Vibrio Infections/immunology , Vibrio Infections/veterinary , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/analogs & derivatives , Perciformes/immunology , Perciformes/genetics , Fishes/immunology , Fishes/genetics
2.
J Biomol Struct Dyn ; 40(16): 7483-7495, 2022 10.
Article En | MEDLINE | ID: mdl-33710949

Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are cytosolic receptors implicated in recognition of intracellular pathogen associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs). Depending upon their effector binding domain (EBD) at the C-terminal, the NLRs are categorized into NLRA, NLRB, NLRC, NLRP and NLRX. NOD1 is a pivotal player in immune responses against bacterial and viral invasions and interacts with pathogens via C-terminal leucine rich repeat (LRR) domain. This study aims at characterizing NOD1 in an economically important teleost of the Indian subcontinent, spotted snakehead Channa punctata. The understanding of pathogen-receptor interaction in teleosts is still obscure. In light of this, combinatorial approach involving protein modeling, docking, MD simulation and binding free energy calculation were employed to identify key motifs involved in binding iE-DAP. In silico analysis revealed that NOD1 consists of 943 amino acids comprising of one caspase recruitment domain (CARD) at N-terminal, one central NACHT domain and nine leucine rich repeat (LRR) regions at C-terminal. Structural dynamics study showed that the C-terminal ß-sheet LRR4-7 region is involved in iE-DAP binding. NOD1 was ubiquitously and constitutively expressed in all tissues studied. Differential expression profile of NOD1 induced by Aeromonas hydrophila infection was also investigated. Lymphoid organs and phagocytes of infected spotted snakehead showed significant downregulation of NOD1 expression. The current study thus gives an insight into structural and functional dynamics of NOD1 which might have future prospect for structure-based drug designing in teleosts.Communicated by Ramaswamy H. Sarma.


Computational Biology , Nod1 Signaling Adaptor Protein , Diaminopimelic Acid/analogs & derivatives , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Leucine/chemistry , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism
3.
Molecules ; 25(22)2020 Nov 10.
Article En | MEDLINE | ID: mdl-33182604

The dipeptide d-Glu-meso-DAP (iE-DAP) is the minimal structural fragment capable of activating the innate immune receptor nucleotide-binding oligomerization domain protein (NOD1). The meso-diaminopimelic acid (meso-DAP) moiety is known to be very stringent in terms of the allowed structural modifications which still retain the NOD1 activity. The aim of our study was to further explore the chemical space around the meso-DAP portion and provide a deeper understanding of the structural features required for NOD1 agonism. In order to achieve the rigidization of the terminal amine functionality of meso-DAP, isoxazoline and pyridine heterocycles were introduced into its side-chain. Further, we incorporated the obtained meso-DAP mimetics into the structure of iE-DAP. Collectively, nine innovative iE-DAP derivatives additionally equipped with lauroyl or didodecyl moieties at the α-amino group of d-Glu have been prepared and examined for their NOD1 activating capacity. Overall, the results obtained indicate that constraining the terminal amino group of meso-DAP abrogates the compounds' ability to activate NOD1, since only compound 6b retained noteworthy NOD1 agonistic activity, and underpin the stringent nature of this amino acid with regard to the allowed structural modifications.


Diaminopimelic Acid/analogs & derivatives , Diaminopimelic Acid/chemical synthesis , Immunity, Innate , NF-kappa B p50 Subunit/chemistry , Nod1 Signaling Adaptor Protein/chemistry , Cell Proliferation , Chemistry Techniques, Synthetic , Esters/chemistry , Humans , Isoxazoles/chemistry , Molecular Conformation , Protein Conformation , Pyridines/chemistry
4.
Eur J Med Chem ; 204: 112575, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32731185

Nucleotide-binding oligomerization domain-containing proteins 1 and 2 play important roles in immune system activation. Recently, a shift has occurred due to the emerging knowledge that preventing nucleotide-binding oligomerization domains (NODs) signaling could facilitate the treatment of some cancers, which warrants the search for dual antagonists of NOD1 and NOD2. Herein, we undertook the synthesis and identification of a new class of derivatives of dual NOD1/NOD2 antagonists with novel benzofused five-membered sultams. Compound 14k was finally demonstrated to be the most potent molecule that inhibits both NOD1-and NOD2-stimulated NF-κB and MAPK signaling in vitro and in vivo.


Naphthalenesulfonates/chemistry , Naphthalenesulfonates/pharmacology , Nod1 Signaling Adaptor Protein/antagonists & inhibitors , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Animals , Drug Design , HEK293 Cells , Humans , Male , Mice , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/metabolism , Protein Domains , Signal Transduction/drug effects
5.
Science ; 366(6464): 460-467, 2019 10 25.
Article En | MEDLINE | ID: mdl-31649195

The nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2) are intracellular pattern-recognition proteins that activate immune signaling pathways in response to peptidoglycans associated with microorganisms. Recruitment to bacteria-containing endosomes and other intracellular membranes is required for NOD1/2 signaling, and NOD1/2 mutations that disrupt membrane localization are associated with inflammatory bowel disease and other inflammatory conditions. However, little is known about this recruitment process. We found that NOD1/2 S-palmitoylation is required for membrane recruitment and immune signaling. ZDHHC5 was identified as the palmitoyltransferase responsible for this critical posttranslational modification, and several disease-associated mutations in NOD2 were found to be associated with defective S-palmitoylation. Thus, ZDHHC5-mediated S-palmitoylation of NOD1/2 is critical for their ability to respond to peptidoglycans and to mount an effective immune response.


Acyltransferases/metabolism , Lipoylation , Nod1 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Signal Transduction , Animals , Cysteine/chemistry , HCT116 Cells , HEK293 Cells , Humans , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptidoglycan , Phagosomes/immunology , Phagosomes/microbiology , Protein Processing, Post-Translational , RAW 264.7 Cells , Salmonella typhimurium
6.
Science ; 365(6448)2019 07 05.
Article En | MEDLINE | ID: mdl-31273097

Multiple cytosolic innate sensors form large signalosomes after activation, but this assembly needs to be tightly regulated to avoid accumulation of misfolded aggregates. We found that the eIF2α kinase heme-regulated inhibitor (HRI) controls NOD1 signalosome folding and activation through a process requiring eukaryotic initiation factor 2α (eIF2α), the transcription factor ATF4, and the heat shock protein HSPB8. The HRI/eIF2α signaling axis was also essential for signaling downstream of the innate immune mediators NOD2, MAVS, and TRIF but dispensable for pathways dependent on MyD88 or STING. Moreover, filament-forming α-synuclein activated HRI-dependent responses, which suggests that the HRI pathway may restrict toxic oligomer formation. We propose that HRI, eIF2α, and HSPB8 define a novel cytosolic unfolded protein response (cUPR) essential for optimal innate immune signaling by large molecular platforms, functionally homologous to the PERK/eIF2α/HSPA5 axis of the endoplasmic reticulum UPR.


Cytosol/enzymology , Cytosol/immunology , Immunity, Innate , Protein Serine-Threonine Kinases/physiology , Unfolded Protein Response/immunology , Activating Transcription Factor 4/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line , Endoplasmic Reticulum Chaperone BiP , Eukaryotic Initiation Factor-2/metabolism , Fibroblasts , Heat-Shock Proteins/metabolism , Humans , Listeria/immunology , Membrane Proteins/metabolism , Mice , Mice, Mutant Strains , Molecular Chaperones/metabolism , Myeloid Differentiation Factor 88/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Protein Serine-Threonine Kinases/genetics , Salmonella/immunology , Salmonella Infections , Shigella/immunology , Signal Transduction
7.
Bioorg Med Chem Lett ; 29(10): 1153-1161, 2019 05 15.
Article En | MEDLINE | ID: mdl-30890292

The innate immune system is the body's first defense against invading microorganisms, relying on the recognition of bacterial-derived small molecules by host protein receptors. This recognition event and downstream immune response rely heavily on the specific chemical features of both the innate immune receptors and their bacterial derived ligands. This review presents a chemist's perspective on some of the most crucial and complex components of two receptors (NOD1 and NOD2): starting from the structural and chemical characteristics of bacterial-derived small molecules, to the specific proposed models of molecular recognition of these molecules by immune receptors, to the subsequent post-translational modifications that ultimately dictate downstream immune signaling. Recent advances in the field are discussed, as well as the potential for the development of targeted therapeutics.


Nod1 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Bacteria/metabolism , Humans , Immunity, Innate , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Protein Processing, Post-Translational , Signal Transduction
8.
Med Res Rev ; 39(5): 1447-1484, 2019 09.
Article En | MEDLINE | ID: mdl-30548868

In the last decade, cancer immunotherapy has emerged as an effective alternative to traditional therapies such as chemotherapy and radiation. In contrast to the latter, cancer immunotherapy has the potential to distinguish between cancer and healthy cells, and thus to avoid severe and intolerable side-effects, since the cancer cells are effectively eliminated by stimulated immune cells. The cytosolic nucleotide-binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are important components of the innate immune system and constitute interesting targets in terms of strengthening the immune response against cancer cells. Many NOD ligands have been synthesized, in particular NOD2 agonists that exhibit favorable immunostimulatory and anticancer activity. Among them, mifamurtide has already been approved in Europe by the European Medicine Agency for treating patients with osteosarcoma in combination with chemotherapy after complete surgical removal of the primary tumor. This review is focused on NOD receptors as promising targets in cancer immunotherapy as well as summarizing current knowledge of the various NOD ligands exhibiting antitumor and even antimetastatic activity in vitro and in vivo.


Neoplasms/therapy , Nucleotides/metabolism , Antineoplastic Agents/therapeutic use , Humans , Ligands , Neoplasms/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/metabolism , Polymerization , Protein Conformation , Signal Transduction
9.
PLoS One ; 13(10): e0206244, 2018.
Article En | MEDLINE | ID: mdl-30352081

RIP2, one of the RIP kinases, interacts with p75 neurotrophin receptor, regulating the neuron survival, and with NOD1 and NOD2 proteins, causing the innate immune response against gram-negative and gram-positive bacteria via its caspase recruitment domain (CARD). This makes RIP2 a prospective target for novel therapies, aimed to modulate the inflammatory diseases and neurogenesis/neurodegeneration. Several studies report the problems with the stability of human RIP2 CARD and its production in bacterial hosts, which is a prerequisite for the structural investigation with solution NMR spectroscopy. In the present work, we report the high yield production and refolding protocols and resolve the structure of rat RIP2 CARD. The structure reveals the important differences to the previously published conformation of the homologous human protein. Using solution NMR, we characterized the intramolecular mobility and pH-dependent behavior of RIP2 CARD, and found the propensity of the protein to form high-order oligomers at physiological pH while being monomeric under acidic conditions. The oligomerization of protein may be explained, based on the electrostatic properties of its surface. Analysis of the structure and sequences of homologous proteins reveals the residues which are significant for the unusual fold of RIP2 CARD domains from different species. The high-throughput protein production/refolding protocols and proposed explanation for the protein oligomerization, provide an opportunity to design the stabilized variants of RIP2 CARD, which could be used to study the structural details of RIP2/NOD1/NOD2 interaction and perform the rational drug design.


Caspase Activation and Recruitment Domain , Protein Multimerization , Protein Refolding , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Sequence Homology, Amino Acid , Solutions , Static Electricity
10.
Fish Shellfish Immunol ; 79: 153-162, 2018 Aug.
Article En | MEDLINE | ID: mdl-29723664

NOD1 (Nucleotide-binding oligomerization domain-containing protein 1) is one of the most prominent intracellular Nod-like receptors (NLRs), responsible for detecting different microbial components and products arising from tissue injury. Here, we have identified and cloned NOD1 transcript in the Asian seabass, Lates calcarifer (AsNOD1), which consists of 3749 nucleotides and encodes for a predicted putative protein of 900 AA. The AsNOD1 possesses the typical structure of NLR family, consisting of N-terminal CARD domain, centrally located NACHT domain and C-terminal LRRs. The AsNOD1 showed ubiquitous tissue expression in 11 different tissues of healthy animals tested with high levels of expression in hindgut and gill. From the ontogenetic expression profile of AsNOD1, it is quite evident that this gene might follow a maternally-transferred trend in euryhaline teleosts, as it is highly abundant in embryonic developmental stages. The constitutive immunomodulation of AsNOD1 in terms of expression level was clearly evident in the different tissues of Asian seabass-injected either with Vibrio alginolyticus or poly I:C. However, injection with Staphylococcus aureus did not elicit similar immunomodulation except for the up-regulation noticed at few time-points in some tissues. SISK-cell line induced with different ligands such as poly I:C, LPS and PGN also showed up-regulation of AsNOD1 in certain time-points in vitro. Based on the results obtained in the present study, it can be inferred that the AsNOD1 might play an immunoregulatory role upon exposure to different bacterial as well as viral PAMPs and also might be an important component of innate immune element during embryonic and larval development in the euryhaline teleost Asian seabass.


Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/immunology , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Base Sequence , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Lipopolysaccharides/pharmacology , Nod1 Signaling Adaptor Protein/chemistry , Peptidoglycan/pharmacology , Phylogeny , Poly I-C/pharmacology , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Vibrio Infections/immunology , Vibrio alginolyticus/physiology
11.
Biochem J ; 474(16): 2691-2711, 2017 07 27.
Article En | MEDLINE | ID: mdl-28673961

Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso-diaminopimelic acid (mesoDAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors.


Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Molecular Docking Simulation , Nod1 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/genetics , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , HEK293 Cells , Humans , Ligands , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Domains
12.
PLoS One ; 12(1): e0170232, 2017.
Article En | MEDLINE | ID: mdl-28114344

The nucleotide-binding and oligomerization domain (NOD)-containing protein 1 (NOD1) plays the pivotal role in host-pathogen interface of innate immunity and triggers immune signalling pathways for the maturation and release of pro-inflammatory cytokines. Upon the recognition of iE-DAP, NOD1 self-oligomerizes in an ATP-dependent fashion and interacts with adaptor molecule receptor-interacting protein 2 (RIP2) for the propagation of innate immune signalling and initiation of pro-inflammatory immune responses. This interaction (mediated by NOD1 and RIP2) helps in transmitting the downstream signals for the activation of NF-κB signalling pathway, and has been arbitrated by respective caspase-recruitment domains (CARDs). The so-called CARD-CARD interaction still remained contradictory due to inconsistent results. Henceforth, to understand the mode and the nature of the interaction, structural bioinformatics approaches were employed. MD simulation of modelled 1:1 heterodimeric complexes revealed that the type-Ia interface of NOD1CARD and the type-Ib interface of RIP2CARD might be the suitable interfaces for the said interaction. Moreover, we perceived three dynamically stable heterotrimeric complexes with an NOD1:RIP2 ratio of 1:2 (two numbers) and 2:1. Out of which, in the first trimeric complex, a type-I NOD1-RIP2 heterodimer was found interacting with an RIP2CARD using their type-IIa and IIIa interfaces. However, in the second and third heterotrimer, we observed type-I homodimers of NOD1 and RIP2 CARDs were interacting individually with RIP2CARD and NOD1CARD (in type-II and type-III interface), respectively. Overall, this study provides structural and dynamic insights into the NOD1-RIP2 oligomer formation, which will be crucial in understanding the molecular basis of NOD1-mediated CARD-CARD interaction in higher and lower eukaryotes.


Caspases/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Amino Acid Sequence , Binding Sites , Dimerization , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Nod1 Signaling Adaptor Protein/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Sequence Homology, Amino Acid , Static Electricity
13.
Biochem J ; 473(24): 4573-4592, 2016 12 15.
Article En | MEDLINE | ID: mdl-27742759

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP The biomolecular structure-recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1-LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu-mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu-mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1-LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1-LRR receptor recognition.


Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary
14.
FEMS Microbiol Lett ; 363(17)2016 09.
Article En | MEDLINE | ID: mdl-27421958

Chlamydial species are common intracellular parasites that cause various diseases, mainly characterized by persistent infection, which lead to inflammatory responses modulated by pattern recognition receptors (PRRs). The best understood PRRs are the extracellular Toll-like receptors, but recent significant advances have focused on two important proteins, NOD1 and NOD2, which are members of the intracellular nucleotide-binding oligomerization domain receptor family and are capable of triggering the host innate immune signaling pathways. This results in the production of pro-inflammatory cytokines, which is vital for an adequate host defense against intracellular chlamydial infection. NOD1/2 ligands are known to derive from peptidoglycan, and the latest research has resolved the paradox of whether chlamydial species possess this bacterial cell wall component; this finding is likely to promote in-depth investigations into the interaction between the NOD proteins and chlamydial pathogens. In this review, we summarize the basic characteristics and signal transduction functions of NOD1 and NOD2 and highlight the new research on the roles of NOD1 and NOD2 in the host defense against chlamydial infection.


Chlamydia Infections/immunology , Immunity, Innate , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Animals , Chlamydia/immunology , Chlamydia/pathogenicity , Chlamydia Infections/microbiology , Cytokines/metabolism , Humans , Inflammation , Mice , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/chemistry , Signal Transduction , Toll-Like Receptors
15.
Fish Shellfish Immunol ; 51: 53-63, 2016 Apr.
Article En | MEDLINE | ID: mdl-26876355

NOD1 has important roles in innate immunity as sensor of microbial components derived from bacterial peptidoglycan. In this study, we identified genes encoding components of the NOD1 signaling pathway, including NOD1 (OmNOD1) and RIP2 (OmRIP2) from rainbow trout, Oncorhynchus mykiss, and investigated whether OmNOD1 has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 treated with NOD1-specific ligand (iE-DAP). The deduced amino acid sequence of OmNOD1 contained conserved CARD, NOD and LRR domains. Loss-of-function and gain-of-function experiments indicated that OmNOD1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmNOD1 in RTH-149 cells treated with iE-DAP decreased the expression of IL-1ß, IL-6, IL-8 and TNF-α. Conversely, overexpression of OmNOD1 resulted in up-regulation of IL-1ß, IL-6, IL-8 and TNF-α expression. In addition, RIP2 inhibitor (gefitinib) significantly decreased the expression of these pro-inflammatory cytokines induced by iE-DAP in RTH-149 cells. These findings highlight the important role of NOD1 signaling pathway in fish in eliciting innate immune response.


Cytokines/metabolism , Fish Proteins/genetics , Immunity, Innate , Nod1 Signaling Adaptor Protein/genetics , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/immunology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Fish Proteins/chemistry , Fish Proteins/metabolism , Immunomodulation , Ligands , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Oncorhynchus mykiss/metabolism , Phylogeny , Sequence Alignment/veterinary , Up-Regulation
16.
Mol Biosyst ; 11(8): 2324-36, 2015 Aug.
Article En | MEDLINE | ID: mdl-26079944

Nucleotide-binding and oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern-recognition receptors (PRRs) composed of an N-terminal caspase activation and recruitment domain (CARD), a central NACHT domain and C-terminal leucine-rich repeats (LRRs). They play a vital role in innate immune signaling by activating the NF-κB pathway via recognition of peptidoglycans by LRRs, and ATP-dependent self-oligomerization of NACHT followed by downstream signaling. After oligomerization, CARD/s play a crucial role in activating downstream signaling via the adaptor molecule, RIP2. Due to the inadequacy of experimental 3D structures of CARD/s of NOD2 and RIP2, and results from differential experimental setups, the RIP2-mediated CARD-CARD interaction has remained as a contradictory statement. We employed a combinatorial approach involving protein modeling, docking, molecular dynamics simulation, and binding free energy calculation to illuminate the molecular mechanism that shows the possible involvement of either the acidic or basic patch of zebrafish NOD1/2-CARD/a and RIP2-CARD in CARD-CARD interaction. Herein, we have hypothesized 'type-I' mode of CARD-CARD interaction in NOD1 and NOD2, where NOD1/2-CARD/a involve their acidic surfaces to interact with RIP2. Asp37 and Glu51 (of NOD1) and Arg477, Arg521 and Arg529 (of RIP2) were identified to be crucial for NOD1-RIP2 interaction. However, in NOD2-RIP2, Asp32 (of NOD2) and Arg477 and Arg521 (of RIP2) were anticipated to be significant for downstream signaling. Furthermore, we found that strong electrostatic contacts and salt bridges are crucial for protein-protein interactions. Altogether, our study has provided novel insights into the RIP2-mediated CARD-CARD interaction in zebrafish NOD1 and NOD2, which will be helpful to understand the molecular basis of the NOD1/2 signaling mechanism.


Multiprotein Complexes/chemistry , NF-kappa B/chemistry , Nod1 Signaling Adaptor Protein/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Zebrafish Proteins/chemistry , Amino Acid Sequence/genetics , Animals , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Multiprotein Complexes/genetics , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Protein Binding , Protein Conformation , Protein Interaction Mapping , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
PLoS One ; 10(3): e0121415, 2015.
Article En | MEDLINE | ID: mdl-25811192

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.


Adenosine Triphosphate/metabolism , Models, Molecular , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Animals , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Conformation , Reproducibility of Results , Sequence Alignment , Zebrafish
18.
PLoS One ; 9(8): e104017, 2014.
Article En | MEDLINE | ID: mdl-25127239

The Caspase Recruitment Domain (CARD) from the innate immune receptor NOD1 was crystallized with Ubiquitin (Ub). NOD1 CARD was present as a helix-swapped homodimer similar to other structures of NOD1 CARD, and Ub monomers formed a homodimer similar in conformation to Lys48-linked di-Ub. The interaction between NOD1 CARD and Ub in the crystal was mediated by novel binding sites on each molecule. Comparisons of these sites to previously identified interaction surfaces on both molecules were made along with discussion of their potential functional significance.


Models, Molecular , Nod1 Signaling Adaptor Protein/chemistry , Protein Conformation , Protein Interaction Domains and Motifs , Ubiquitin/chemistry , Binding Sites , Humans , Nod1 Signaling Adaptor Protein/metabolism , Protein Binding , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Ubiquitin/metabolism
19.
Mol Biosyst ; 10(11): 2942-53, 2014 Nov.
Article En | MEDLINE | ID: mdl-25137227

Nucleotide binding and oligomerization domain 1 (NOD1), a cytoplasmic pattern recognition receptor (PRR) and is a key component for modulating innate immunity and signaling. It is highly specific to γ-D-Glu-mDAP (iE-DAP), a cell wall component of Gram-negative and few Gram-positive bacteria. In the absence of the experimental structure of NOD1 leucine rich repeat (NOD1-LRR) domain, the NOD signaling cascade mediated through NOD1 and iE-DAP interaction is poorly understood. Herein, we modeled 3D structure of zebrafish NOD1-LRR (zNOD1-LRR) through a protein-threading approach and structural integrity of the model was assessed using molecular dynamics simulations. Molecular interaction analysis of iE-DAP and zNOD1-LRR, their complex stability and binding free energy studies were conducted to anticipate the ligand binding residues in zNOD1. Our study revealed that His775, Lys777, Asp803, Gly805, Trp807, Asn831, Ser833, Ile859 and Trp861 situated in the ß-sheet region of zNOD1-LRR could be involved in iE-DAP recognition, which correlates the earlier findings in human. Comparison of binding free energies of native and mutant zNOD1-iE-DAP complexes delineated His775, Lys777, Asp803, Ser833 and Ile859 as the pivotal residues for energetic stability of NOD1 and iE-DAP interaction. This study provides the first comprehensive description of biophysical and biochemical parameters responsible for NOD1 and iE-DAP interaction in zebrafish, which is expected to shed more light on NOD1 signaling and therapeutic applications in other organisms.


Diaminopimelic Acid/analogs & derivatives , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Signal Transduction
20.
BMC Res Notes ; 7: 124, 2014 Mar 05.
Article En | MEDLINE | ID: mdl-24598002

BACKGROUND: Activation and signal transduction in the Nucleotide binding, leucine-rich repeat containing receptor (NLR) family needs to be tightly regulated in order to control the inflammatory response to exogenous and endogenous danger signals. Phosphorylation is a common cellular mechanism of regulation that has recently been shown to be important in signalling in another family of cytoplasmic pattern recognition receptors, the RIG-I like receptors. In addition, single nucleotide polymorphisms can alter receptor activity, potentially leading to dysfunction and/or a predisposition to inflammatory barrier diseases. FINDINGS: We have computationally analysed the N-terminus of NOD1 and found seven theoretical phosphorylation sites in, or immediately before, the NOD1 Caspase Activation Domain (CARD). Two of these, serine 7 and tyrosine 49 are also found as rare polymorphisms in the African-American population and European-American populations respectively. Mutating serine 7 to either an aspartic acid or an asparagine to mimic the potential impact of phosphorylation or the polymorphism respectively did not affect the response of NOD1 to ligand-mediated NFκB signalling. CONCLUSIONS: The NOD1 polymorphism S7N does not interfere with receptor function in response to ligand stimulation.


Mutation , Nod1 Signaling Adaptor Protein/genetics , Polymorphism, Genetic , Signal Transduction/genetics , Black or African American/genetics , Amino Acid Sequence , Binding Sites/genetics , HEK293 Cells , Humans , Immunoblotting , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Molecular Sequence Data , NF-kappa B/genetics , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Phosphorylation , Protein Structure, Tertiary , Serine/chemistry , Serine/genetics , Serine/metabolism , Threonine/chemistry , Threonine/genetics , Threonine/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , White People/genetics
...