Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Auton Neurosci ; 253: 103177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636284

RESUMEN

BACKGROUND: Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS: Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS: CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS: This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Esófago , Ganglio Nudoso , Células Receptoras Sensoriales , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/análisis , Esófago/inervación , Esófago/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Ganglio Nudoso/metabolismo , Placa Motora/metabolismo , Ratas , Ganglios Espinales/metabolismo , Bulbo Raquídeo/metabolismo , Sustancia P/metabolismo , Músculo Estriado/inervación , Músculo Estriado/metabolismo , Nervio Vago/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Fibras Musculares Esqueléticas/metabolismo , Canales Catiónicos TRPV/metabolismo , Amidinas
2.
Neuropeptides ; 105: 102418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442503

RESUMEN

The aim of this study is to verify the impact of Leptin in blood pressure (BP) regulation and Leptin-resistance in metabolic/neurogenic hypertension through baroreflex afferents and dysregulation. Artery BP/heart rate (HR) were measured while nodose (NG) microinjection of Leptin, membrane depolarization/inward current were obtained by whole-cell patch from NG neurons isolated from adult female rats. Baroreflex sensitivity (BRS) tested with PE/SNP, distribution/expression of Leptin/receptors in the NG/nucleus tractus solitary (NTS) examined using immumostaining and qRT-PCR, and serum concentrations of Leptin/NE measured by ELISA were observed in control and high fructose-drinking induced hypertension (HTN-HFD) rats. The results showed that BP was significantly/dose-dependently reduced by Leptin NG microinjection likely through direct excitation of female-specific subpopulation of Ah-type neurons showing a potent membrane depolarization/inward currents. Sex-specific distribution/expression of OB-Ra/OB-Rb in the NG were detected with estrogen-dependent manner, similar observations were also confirmed in the NTS. As expected, BRS was dramatically decreased in the presence of PE/SNP in both male and female rats except for the female with PE at given concentrations. Additionally, serum concentration of Leptin was elevated in HFD-HTN model rats of either sex with more obvious in females. Under hypertensive condition, the mean fluorescent density of OB-R and mRNA expression for OB-Ra/OB-Rb in the NG/NTS were significantly down-regulated. These results have demonstrated that Leptin play a role in dominant parasympathetic drive via baroreflex afferent activation to buffer Leptin-mediated sympathetic activation systemically and Leptin-resistance is an innegligible mechanism for metabolic/neurogenic hypertension through baroreflex afferent dysregulation.


Asunto(s)
Barorreflejo , Presión Sanguínea , Hipertensión , Leptina , Animales , Femenino , Masculino , Ratas , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Leptina/farmacología , Leptina/metabolismo , Leptina/sangre , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Leptina/metabolismo , Núcleo Solitario/metabolismo , Núcleo Solitario/efectos de los fármacos
3.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36975145

RESUMEN

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Asunto(s)
Ritmo Circadiano , Ácido Glutámico , Núcleo Solitario , Sinapsis , Ritmo Circadiano/fisiología , Ácido Glutámico/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Neuronas Aferentes/metabolismo , Nervio Vago/citología , Nervio Vago/fisiología , Potenciales de Acción , Masculino , Animales , Ratones , Ganglio Nudoso/metabolismo , Transducción de Señal , Conductividad Eléctrica , Técnicas de Placa-Clamp
4.
J Neural Eng ; 20(2)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920156

RESUMEN

Objective.Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.Approach.We developed novel methods forin vivoimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.Results.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.Significance.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.


Asunto(s)
Calcio , Ganglio Nudoso , Ratones , Animales , Ganglio Nudoso/metabolismo , Calcio/metabolismo , Nervio Vago , Células Receptoras Sensoriales/metabolismo , Vías Aferentes
5.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36192157

RESUMEN

The Emx1-IRES-Cre transgenic mouse is commonly used to direct genetic recombination in forebrain excitatory neurons. However, the original study reported that Emx1-Cre is also expressed embryonically in peripheral autonomic ganglia, which could potentially affect the interpretation of targeted circuitry contributing to systemic phenotypes. Here, we report that Emx1-Cre is expressed in the afferent vagus nerve system involved in autonomic cardiorespiratory regulatory pathways. Our imaging studies revealed expression of Emx1-Cre driven tdtomato fluorescence in the afferent vagus nerve innervating the dorsal medulla of brainstem, cell bodies in the nodose ganglion, and their potential target structures at the carotid bifurcation such as the carotid sinus and the superior cervical ganglion (SCG). Photostimulation of the afferent terminals in the nucleus tractus solitarius (NTS) in vitro using Emx1-Cre driven ChR2 reliably evoked EPSCs in the postsynaptic neurons with electrophysiological characteristics consistent with the vagus afferent nerves. In addition, optogenetic stimulation targeting the Emx1-Cre expressing structures identified in this study, such as vagus nerve, carotid bifurcation, and the dorsal medulla surface transiently depressed cardiorespiratory rate in urethane anesthetized mice in vivo Together, our study demonstrates that Emx1-IRES-Cre is expressed in the key peripheral autonomic nerve system and can modulate cardiorespiratory function independently of forebrain expression. These results raise caution when interpreting systemic phenotypes of Emx1-IRES-Cre conditional recombinant mice, and also suggest the utility of this line to investigate modulators of the afferent vagal system.


Asunto(s)
Ganglio Nudoso , Núcleo Solitario , Animales , Ganglios Autónomos , Integrasas , Ratones , Ganglio Nudoso/metabolismo , Uretano , Nervio Vago/metabolismo
6.
Neuropeptides ; 94: 102261, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35704969

RESUMEN

Thyrotropin-releasing hormone (TRH) plays a central role in metabolic homeostasis, and single-cell sequencing has recently demonstrated that vagal sensory neurons in the nodose ganglion express thyrotropin-releasing hormone receptor 1 (TRHR1). Here, in situ hybridization validated the presence of TRHR1 in nodose ganglion (NG) neurons and immunohistochemistry showed that the receptor is expressed at the protein level. However, it has yet to be demonstrated whether TRHR1 is functionally active in NG neurons. Using NG explants transduced with a genetically encoded Ca2+ indicator (GECI), we show that TRH increases Ca2+ in a subset of NG neurons. TRH-induced Ca2+ transients were briefer compared to those induced by CCK-8, 2-Me-5-HT and ATP. Blocking Na+ channels with TTX or Na+ substitution did not affect the TRH-induced Ca2+ increase, but blocking Gq signaling with YM-254890 abolished the TRH-induced response. Field potential recordings from the vagus nerve in vitro showed an increase in response to TRH, suggesting that TRH signaling produces action potentials in NG neurons. These observations indicate that TRH activates a small group of NG neurons, involving Gq pathways, and we hypothesize that these neurons may play a role in gut-brain signaling.


Asunto(s)
Ganglio Nudoso , Hormona Liberadora de Tirotropina , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Nervio Vago/metabolismo
7.
Biochem Biophys Res Commun ; 608: 66-72, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35390674

RESUMEN

Enteroendocrine cells (EECs) are the primary sensory cells that sense the gut luminal environment and secret hormones to regulate organ function. Recent studies revealed that vagal afferent neurons are connected to EECs and relay sensory information from EECs to the brain stem. To date, however, the identity of vagal afferent neurons connected to a given EEC subtype and the mode of their gene responses to its intestinal hormone have remained unknown. Hypothesizing that EEC-associated vagal afferent neurons change their gene expression in response to the microbiota-related extracellular stimuli, we conducted comparative gene expression analyses of the nodose-petrosal ganglion complex (NPG) using specific pathogen-free (SPF) and germ-free (GF) mice. We report here that the Uts2b gene, which encodes a functionally unknown neuropeptide, urotensin 2B (UTS2B), is expressed in a microbiota-dependent manner in NPG neurons. In cultured NPG neurons, expression of Uts2b was induced by AR420626, the selective agonist for FFAR3. Moreover, distinct gastrointestinal hormones exerted differential effects on Uts2b expression in NPG neurons, where cholecystokinin (CCK) significantly increased its expression. The majority of Uts2b-expressing NPG neurons expressed CCK-A, the receptor for CCK, which comprised approximately 25% of all CCK-A-expressing NPG neurons. Selective fluorescent labeling of Uts2b-expressing NPG neurons revealed a direct contact of their nerve fibers to CCK-expressing EECs. This study identifies the Uts2b as a microbiota-regulated gene, demonstrates that Uts2b-expressing vagal afferent neurons transduce sensory information from CCK-expressing EECs to the brain, and suggests potential involvement of UTS2B in a modality of CCK actions.


Asunto(s)
Colecistoquinina , Péptidos y Proteínas de Señalización Intracelular , Microbiota , Neuronas Aferentes , Hormonas Peptídicas , Nervio Vago , Animales , Colecistoquinina/genética , Colecistoquinina/metabolismo , Células Enteroendocrinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neuronas Aferentes/metabolismo , Ganglio Nudoso/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Nervio Vago/metabolismo
8.
J Anat ; 241(2): 230-244, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396708

RESUMEN

Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Animales , Masculino , Ganglio Nudoso/metabolismo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio/metabolismo , Nervio Vago/metabolismo
9.
Int J Obes (Lond) ; 46(6): 1212-1221, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35241786

RESUMEN

BACKGROUND/OBJECTIVES: Disrupted leptin signaling in vagal afferent neurons contributes to hyperphagia and obesity. Thus, we tested the hypothesis that intrinsic negative regulators of leptin signaling, suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) underlie dysfunctional leptin-mediated vagal afferent satiety signaling during obesity. METHODS: Experiments were performed on standard chow-fed control mice, high-fat fed (HFF), or low-fat fed (LFF) mice. SOCS3 and PTP1B expression were quantified using western blot and quantitative PCR. Nodose ganglion neuronal excitability and jejunal afferent sensitivity were measured by patch clamp and extracellular afferent recordings, respectively. RESULTS: Increased expression of SOCS3 and PTP1B were observed in the jejunum of HFF mice. Prolonged incubation with leptin attenuated nodose ganglion neuronal excitability, and this effect was reversed by inhibition of SOCS3. Leptin potentiated jejunal afferent nerve responses to CCK in LFF mice but decreased them in HFF mice. Inhibition of SOCS3 restored impaired vagal afferent neuronal excitability and afferent nerve responses to satiety mediators during obesity. Two-pore domain K+ channel (K2P) conductance and nitric oxide (NO) production that we previously demonstrated were elevated during obesity were decreased by inhibitions of SOCS3 or PTP1B. CONCLUSIONS: This study suggests that obesity impairs vagal afferent sensitivity via SOCS3 and PTP1B, likely as a consequence of obesity-induced hyperleptinemia. The mechanisms underlying leptin resistance appear also to cause a more global impairment of satiety-related vagal afferent responsiveness.


Asunto(s)
Leptina , Obesidad , Animales , Leptina/metabolismo , Ratones , Ganglio Nudoso/metabolismo , Obesidad/metabolismo , Saciedad/fisiología , Nervio Vago/fisiología
10.
Sci Rep ; 11(1): 17813, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497285

RESUMEN

Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


Asunto(s)
Hormona del Crecimiento/metabolismo , Dolor/metabolismo , Proopiomelanocortina/metabolismo , Prolactina/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ratones , Ratones Transgénicos , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio del Trigémino/citología
11.
Acta Pharmacol Sin ; 42(12): 2173-2180, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34267344

RESUMEN

Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 µM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.


Asunto(s)
Estrógenos/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , Presorreceptores/metabolismo , Animales , Estrógenos/deficiencia , Femenino , Neuronas/efectos de los fármacos , Ovariectomía , Ovario/citología , Ovario/cirugía , Presorreceptores/efectos de los fármacos , Quinolinas/farmacología , Ratas Sprague-Dawley
12.
Cell Metab ; 33(7): 1466-1482.e7, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34043943

RESUMEN

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.


Asunto(s)
Regulación del Apetito , Eje Cerebro-Intestino/fisiología , Glucosa/metabolismo , Células Receptoras Sensoriales/fisiología , Vías Aferentes/metabolismo , Animales , Apetito/fisiología , Regulación del Apetito/genética , Comunicación Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
13.
J Neuroinflammation ; 18(1): 115, 2021 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-33993886

RESUMEN

BACKGROUND: Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS: C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS: HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS: HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Depresión/etiología , Dieta Alta en Grasa/efectos adversos , Duodeno/patología , Trastornos Mentales/etiología , Neuroglía/metabolismo , Animales , Peso Corporal , Duodeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Plexo Mientérico/metabolismo , Plexo Mientérico/patología , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/patología
14.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33154555

RESUMEN

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Asunto(s)
Vías Aferentes/metabolismo , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Sulfuro de Hidrógeno/metabolismo , Hipertensión/fisiopatología , Animales , Antihipertensivos/farmacología , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Cardiotónicos/farmacología , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipertensión/tratamiento farmacológico , Masculino , Ganglio Nudoso/efectos de los fármacos , Ganglio Nudoso/enzimología , Ganglio Nudoso/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/enzimología , Núcleo Solitario/metabolismo , Sulfuros/farmacología , Receptores de Sulfonilureas/metabolismo , Sulfurtransferasas/metabolismo
15.
J Anat ; 238(1): 20-35, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32790077

RESUMEN

Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a major role in the neural control of circulation and in many cardiovascular diseases. However, the exact mechanism of how NO regulates these processes is still not fully understood. This study was designed to determine the possible sources of nitrergic nerve fibres supplying the heart attempting to imply their role in the cardiac neural control. Sections of medulla oblongata, vagal nerve, its rootlets and nodose ganglia, vagal cardiac branches, Th1 -Th5 spinal cord segments, dorsal root ganglia of C8 -Th5 spinal nerves, and stellate ganglia from 28 Wistar rats were examined applying double immunohistochemical staining for nNOS combined with choline acetyltransferase (ChAT), peripherin, substance P, calcitonin gene-related peptide, tyrosine hydroxylase or myelin basic protein. Our findings show that the most abundant population of purely nNOS-immunoreactive (IR) neuronal somata (NS) was observed in the nodose ganglia (37.4 ± 1.3%). A high number of nitrergic NFs spread along the vagal nerve and entered its cardiac branches. All nitrergic neuronal somata (NS) in the nucleus ambiguus were simultaneously immunoreactive (IR) to ChAT and composed only a small subset of neurons (6%). In the dorsal nucleus of vagal nerve, biphenotypic nNOS-IR/ChAT-IR neurons composed 7.0 ± 1.0%, while small purely nNOS-IR neurons were scarce. Nitrergic NS were plentifully distributed within the nuclei of solitary tract. In the examined dorsal root and stellate ganglia, a few nitrergic NS were sporadically present. The majority of sympathetic NS in the intermediolateral nucleus were simultaneously immunoreactive for nNOS and ChAT. In conclusion, an abundant population of nitrergic NS in the nodose ganglion implies that neuronal NO is involved in afferent cardiac innervation. Nevertheless, nNOS-IR neurons identified within vagal nuclei may play a role in the transmission of preganglionic parasympathetic nerve impulses.


Asunto(s)
Ganglios Espinales/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Corazón/inervación , Neuronas Nitrérgicas/metabolismo , Ganglio Nudoso/metabolismo , Nervio Vago/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Femenino , Masculino , Fibras Nerviosas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ratas , Ratas Wistar
16.
Auton Neurosci ; 229: 102735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33032244

RESUMEN

Oxytocin (OT) from the hypothalamus is increased in several cardiorespiratory nuclei and systemically in response to a variety of stimuli and stressors, including hypoxia. Within the nucleus tractus solitarii (nTS), the first integration site for cardiorespiratory reflexes, OT enhances synaptic transmission, action potential (AP) discharge, and cardiac baroreflex gain. The hypoxic stressor obstructive sleep apnea, and its CIH animal model, elevates blood pressure and alters heart rate variability. The nTS receives sensory input from baroafferent neurons that originate in the nodose ganglia. Nodose neurons express the OT receptor (OTR) whose activation elevates intracellular calcium. However, the influence of OT on other ion channels, especially potassium channels important for neuronal activity during CIH, is less known. This study sought to determine the mechanism (s) by which OT modulates sensory afferent-nTS mediated reflexes normally and after CIH. Nodose ganglia neurons from male Sprague-Dawley rats were examined after 10d CIH (6% O2 every 3 min) or their normoxic (21% O2) control. OTR mRNA and protein were identified in Norm and CIH ganglia and was similar between groups. To examine OTR function, APs and potassium currents (IK) were recorded in dissociated neurons. Compared to Norm, after CIH OT depolarized neurons and reduced current-induced AP discharge. After CIH OT also produced a greater reduction in IK that where tetraethylammonium-sensitive. These data demonstrate after CIH OT alters ionic currents in nodose ganglia cells to likely influence cardiorespiratory reflexes and overall function.


Asunto(s)
Barorreflejo/fisiología , Fenómenos Electrofisiológicos/fisiología , Hipoxia/fisiopatología , Ganglio Nudoso/fisiología , Oxitocina/metabolismo , Canales de Potasio/metabolismo , Receptores de Oxitocina/metabolismo , Transducción de Señal/fisiología , Síndromes de la Apnea del Sueño/fisiopatología , Aferentes Viscerales/fisiología , Animales , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Masculino , Ganglio Nudoso/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/metabolismo
17.
Curr Biol ; 30(22): 4510-4518.e6, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32946754

RESUMEN

Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.


Asunto(s)
Ghrelina/metabolismo , Hipocampo/fisiología , Ganglio Nudoso/metabolismo , Receptores de Ghrelina/metabolismo , Vías Aferentes/fisiología , Animales , Peso Corporal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conducta Alimentaria/fisiología , Vaciamiento Gástrico/fisiología , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Hambre/fisiología , Masculino , Memoria Episódica , Ratones , Modelos Animales , Neuronas/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/cirugía , Ratas , Ratas Transgénicas , Receptores de Ghrelina/genética , Vagotomía
18.
J Neurosci ; 40(38): 7216-7228, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817244

RESUMEN

Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.


Asunto(s)
Sistema Nervioso Autónomo/citología , Neuronas Aferentes/metabolismo , Transcriptoma , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiología , Células Cultivadas , Colon/inervación , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , RNA-Seq , Vejiga Urinaria/inervación , Vísceras/inervación
19.
Peptides ; 131: 170371, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659299

RESUMEN

BACKGROUND: Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS: Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS: In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS: AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.


Asunto(s)
Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Ganglio Nudoso/efectos de los fármacos , Obesidad/genética , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Dieta Alta en Grasa , Mucosa Gástrica/inervación , Mucosa Gástrica/metabolismo , Ghrelina/genética , Ghrelina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiopatología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Técnicas de Cultivo de Tejidos
20.
J Clin Invest ; 130(7): 3671-3683, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484458

RESUMEN

The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch. TTN3 was expressed in nerve terminals in the aortic arch and nodose ganglion (NG) neurons. Genetic ablation of Ttn3 induced ambient hypertension, tachycardia, AP fluctuations, and impaired baroreflex sensitivity. Chemogenetic silencing or activation of Ttn3+ neurons in the NG resulted in an increase in AP and heart rate, or vice versa. More important, overexpression of Ttn3 in the NG of Ttn3-/- mice reversed the cardiovascular changes observed in Ttn3-/- mice. We conclude that TTN3 is a molecular component contributing to the sensing of dynamic AP changes in baroreceptors.


Asunto(s)
Aorta Torácica , Presión Sanguínea , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Ganglio Nudoso , Presorreceptores , Animales , Aorta Torácica/inervación , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Células HEK293 , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiopatología , Presorreceptores/metabolismo , Presorreceptores/fisiopatología , Taquicardia/genética , Taquicardia/metabolismo , Taquicardia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...