Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273383

RESUMEN

Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.


Asunto(s)
Neoplasias , Miosina Tipo IIA no Muscular , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIA no Muscular/genética , Animales , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125717

RESUMEN

Acute myeloid leukemia (AML) is the most prevalent type of hematopoietic malignancy. Despite recent therapeutic advancements, the high relapse rate associated with extramedullary involvement remains a challenging issue. Moreover, therapeutic targets that regulate the extramedullary infiltration of AML cells are still not fully elucidated. The Aryl Hydrocarbon Receptor (AHR) is known to influence the progression and migration of solid tumors; however, its role in AML is largely unknown. This study explored the roles of AHR in the invasion and migration of AML cells. We found that suppressed expression of AHR target genes correlated with an elevated relapse rate in AML. Treatment with an AHR agonist on patient-derived AML cells significantly decreased genes associated with leukocyte trans-endothelial migration, cell adhesion, and regulation of the actin cytoskeleton. These results were further confirmed in THP-1 and U937 AML cell lines using AHR agonists (TCDD and FICZ) and inhibitors (SR1 and CH-223191). Treatment with AHR agonists significantly reduced Matrigel invasion, while inhibitors enhanced it, regardless of the Matrigel's stiffness. AHR agonists significantly reduced the migration rate and chemokinesis of both cell lines, but AHR inhibitors enhanced them. Finally, we found that the activity of AHR and the expression of NMIIA are negatively correlated. These findings suggest that AHR activity regulates the invasiveness and motility of AML cells, making AHR a potential therapeutic target for preventing extramedullary infiltration in AML.


Asunto(s)
Movimiento Celular , Leucemia Mieloide Aguda , Cadenas Pesadas de Miosina , Invasividad Neoplásica , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/agonistas , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIA no Muscular/genética , Línea Celular Tumoral , Femenino , Masculino , Regulación Leucémica de la Expresión Génica , Persona de Mediana Edad , Anciano , Células THP-1 , Células U937 , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
3.
Sci Rep ; 14(1): 20175, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215026

RESUMEN

Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward ß-integrin tails than talin1. Moreover, disruption of the talin2-ß-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-ß-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the ß1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.


Asunto(s)
Adhesión Celular , Fibronectinas , Miosina Tipo IIA no Muscular , Unión Proteica , Talina , Animales , Humanos , Cortactina/metabolismo , Fibronectinas/metabolismo , Adhesiones Focales/metabolismo , Integrina beta1/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Podosomas/metabolismo , Talina/metabolismo , Ratones
4.
Nature ; 632(8024): 383-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048823

RESUMEN

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.


Asunto(s)
Factores de Restricción Antivirales , Encéfalo , Herpes Simple , Herpesvirus Humano 1 , Proteínas de la Membrana , Neuronas , Internalización del Virus , Replicación Viral , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Restricción Antivirales/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Muerte Celular , Sistemas CRISPR-Cas/genética , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Neuronas/virología , Neuronas/metabolismo , Carga Viral , Nectinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Interferón Tipo I , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/virología
5.
EMBO Rep ; 25(9): 3870-3895, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969946

RESUMEN

Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.


Asunto(s)
Actinas , Anexina A2 , Membrana Celular , Citoesqueleto , Septinas , Septinas/metabolismo , Septinas/genética , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIA no Muscular/genética , Células HeLa , Calcio/metabolismo , Proteínas S100/metabolismo , Proteínas S100/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
6.
J Virol ; 98(5): e0048324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639486

RESUMEN

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Asunto(s)
Herpesvirus Suido 1 , Inmunidad Innata , Miosina Tipo IIA no Muscular , Seudorrabia , Animales , Humanos , Ratones , Línea Celular , ADN Viral/inmunología , Células HEK293 , Herpesvirus Suido 1/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/inmunología , Miosina Tipo IIA no Muscular/metabolismo , Nucleotidiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Seudorrabia/inmunología , Seudorrabia/virología , Transducción de Señal , Porcinos
7.
J Biol Chem ; 300(1): 105514, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042490

RESUMEN

Non-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described. These cause MYH9 disease, an autosomal-dominant disorder that leads to bleeding disorders, kidney disease, cataracts, and deafness. Approximately two-thirds of these mutations occur in the coiled-coil tail. These mutations could destabilize the 10S state and/or disrupt filament formation or both. To test this, we determined the effects of six specific mutations using multiple approaches, including circular dichroism to detect changes in secondary structure, negative stain electron microscopy to analyze 10S and filament formation in vitro, and imaging of GFP-NM2A in fixed and live cells to determine filament assembly and dynamics. Two mutations in D1424 (D1424G and D1424N) and V1516M strongly decrease 10S stability and have limited effects on filament formation in vitro. In contrast, mutations in D1447 and E1841K, decrease 10S stability less strongly but increase filament lengths in vitro. The dynamic behavior of all mutants was altered in cells. Thus, the positions of mutated residues and their roles in filament formation and 10S stabilization are key to understanding their contributions to NM2A in disease.


Asunto(s)
Mutación Missense , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular , Humanos , Citoesqueleto/metabolismo , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Estructura Secundaria de Proteína
8.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103642

RESUMEN

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Asunto(s)
Adenosina Trifosfato , Pruebas de Enzimas , Miosina Tipo IIA no Muscular , Porcinos , ortoaminobenzoatos , Animales , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Bencilaminas/farmacología , Pruebas de Enzimas/métodos , Pruebas de Enzimas/normas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/metabolismo , Contracción Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , ortoaminobenzoatos/metabolismo , Uracilo/análogos & derivados , Uracilo/farmacología
9.
J Thromb Haemost ; 22(4): 1179-1186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103735

RESUMEN

BACKGROUND: The transcription factor GATA1 is an essential regulator of erythroid cell gene expression and maturation and is also relevant for platelet biogenesis. GATA1-related thrombocytopenia (GATA1-RT) is a rare X-linked inherited platelet disorder (IPD) characterized by macrothrombocytopenia and dyserythropoiesis. Enlarged platelet size, reduced platelet granularity, and noticeable red blood cell anisopoikilocytosis are characteristic but unspecific morphological findings in GATA1-RT. OBJECTIVES: To expand the investigation of platelet phenotype of patients with GATA1-RT by light- and immunofluorescence microscopy on a blood smear. METHODS: We assessed blood smears by light- and immunofluorescence microscopy after May-Grünwald Giemsa staining using a set of 13 primary antibodies against markers belonging to different platelet structures. Antibody binding was visualized by fluorescently labeled secondary antibodies. RESULTS: We investigated 12 individuals with genetically confirmed GATA1-RT from 8 unrelated families. While confirming the already known characteristic of platelet morphology (platelet macrocytosis and reduced expression of markers for α-granules), we also found aggregates of nonmuscular myosin heavy chain II A (NMMIIA) in the erythrocytes in all individuals (1-3 aggregates/cell, 1-3 µm diameter). By systematically reanalyzing blood smears from a cohort of patients with 19 different forms of IPD, we found similar NMMIIA aggregates in the red blood cells only in subjects with GFI1B-related thrombocytopenia (GFI1B-RT), the other major IPD featured by dyserythropoiesis. CONCLUSION: Aggregates of NMMIIA in the erythrocytes associate with GATA1-RT and GFI1B-RT and can facilitate their diagnosis on blood smears. This previously unreported finding might represent a novel marker of dyserythropoiesis assessable in peripheral blood.


Asunto(s)
Anemia , Factor de Transcripción GATA1 , Miosina Tipo IIA no Muscular , Proteínas Proto-Oncogénicas , Proteínas Represoras , Trombocitopenia , Humanos , Plaquetas/metabolismo , Eritrocitos , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética
10.
Cell Rep ; 42(10): 113213, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37804510

RESUMEN

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.


Asunto(s)
Mecanotransducción Celular , Nucleotidiltransferasas , Actinas/metabolismo , GMP Cíclico , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Nucleotidiltransferasas/metabolismo , Humanos , Animales , Ratones
11.
Cell Adh Migr ; 17(1): 1-23, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37743653

RESUMEN

E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFß-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.


Asunto(s)
Miosina Tipo IIA no Muscular , beta Catenina , Cadherinas , Cateninas , Membrana Celular
12.
Am J Chin Med ; 51(7): 1879-1904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37650421

RESUMEN

Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.


Asunto(s)
Isquemia Miocárdica , Miosina Tipo IIA no Muscular , Espirostanos , Humanos , Dinámicas Mitocondriales , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/genética , Espirostanos/farmacología , Espirostanos/uso terapéutico , Apoptosis/genética
13.
J Biol Chem ; 299(9): 105143, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562567

RESUMEN

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Asunto(s)
Empalme Alternativo , Encéfalo , Miosina Tipo IIA no Muscular , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Especificidad de Órganos
14.
Nat Commun ; 14(1): 3463, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308472

RESUMEN

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Miosina Tipo IIA no Muscular , Plasmodium falciparum , Actinas , Bioensayo
15.
Exp Parasitol ; 251: 108565, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331576

RESUMEN

Toxoplasmosis is a serious parasitic infection and novel therapeutic options are highly demanded to effectively eliminate it. In current study, Toxoplasma gondii myosin A, C and F genes were knocked down using small interference RNA (siRNA) method and the parasite survival and virulence was evaluated in vitro and in vivo. The parasites were transfected with specific siRNA, virtually designed for myosin mRNAs, and co-cultured with human foreskin fibroblasts. The transfection rate and the viability of the transfected parasites were measured using flow cytometry and methyl thiazole tetrazolium (MTT) assays, respectively. Finally, the survival of BALB/c mice infected with siRNAs-transfected T. gondii was assessed. It was demonstrated that a transfection rate of 75.4% existed for siRNAs, resulting in 70% (P = 0.032), 80.6% (P = 0.017) and 85.5% (P = 0.013) gene suppression for myosin A, C and F in affected parasites, respectively, which was subsequently confirmed by Western blot analysis. Moreover, lower parasite viability was observed in those with knocked down myosin C with 80% (P = 0.0001), followed by 86.15% (P = 0.004) for myosin F and 92.3% (P = 0.083) for myosin A. Considerably higher mouse survival (about 40 h) was, also, demonstrated in mice challenged with myosin siRNA-transfected T. gondii, in comparison with control group challenged with wild-type parasites. In conclusion, myosin proteins knock down proposes a promising therapeutic strategy to combat toxoplasmosis.


Asunto(s)
Miosina Tipo IIA no Muscular , Parásitos , Toxoplasma , Toxoplasmosis , Humanos , Animales , Ratones , Parásitos/genética , Parásitos/metabolismo , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Virulencia/genética , Toxoplasmosis/parasitología , ARN Interferente Pequeño , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
16.
ACS Nano ; 17(10): 9155-9166, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171255

RESUMEN

Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Miosina Tipo IIA no Muscular , Miosina Tipo IIA no Muscular/metabolismo , Oro/química , Nanopartículas del Metal/química , Nanopartículas/química , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis
17.
PLoS One ; 18(5): e0285251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200287

RESUMEN

HER2 is over-expressed in around 15% to 20% of breast cancers. HER3 plays a critical role in HER2 mediated tumorigenesis. Increased HER3 transcription and protein levels occur upon inhibition of HER2. We aimed to identify proteins that bound to HER3 upon inhibition of the HER family with the pan-HER inhibitor neratinib in HER2+ breast cancer cells. Immunoprecipitation of HER3 followed by mass spectrometry experiments found non-muscle myosin IIA (NMIIA) increased upon neratinib treatment relative to vehicle DMSO treatment. MYH9 is the gene that encodes for the heavy chain of NMIIA. Breast cancer patients with high MYH9 were significantly associated with a shorter disease specific survival compared to patients with low MYH9 expression from the METABRIC cohort of patients. In addition, high MYH9 expression was associated with HER2+ tumors from this cohort. Immunoblots of whole cell lysates of BT474 and MDA-MB-453 HER2+ breast cancer cells demonstrated elevated HER3 and NMIIA protein levels upon neratinib treatment for 24 hours. To examine the role of NMIIA in HER2+ breast cancer, we modulated NMIIA levels in BT474 and MDA-MB-453 cells using doxycycline inducible shRNA targeting MYH9. MYH9 knockdown reduces HER3 protein levels and concomitant reduction in downstream P-Akt. In addition, loss of MYH9 suppresses cell growth, proliferation, migration, and invasion. Our data reveals that NMIIA regulates HER3 and loss of NMIIA reduces HER2+ breast cancer growth.


Asunto(s)
Neoplasias de la Mama , Miosina Tipo IIA no Muscular , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Miosina Tipo IIA no Muscular/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo
18.
Invest Ophthalmol Vis Sci ; 64(4): 20, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070941

RESUMEN

Purpose: Epithelial cells in the equatorial region of the ocular lens undergo a remarkable transition from randomly packed cells into precisely aligned and hexagon-shaped cells organized into meridional rows. We investigated the function of nonmuscle myosin IIA (encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional rows during secondary fiber cell morphogenesis. Methods: We used genetic knock-in mice to study a common human Myh9 mutation, E1841K, in the rod domain. The E1841K mutation disrupts bipolar filament assembly. Lens shape, clarity, and stiffness were evaluated, and Western blots were used to determine the level of normal and mutant myosins. Cryosections and lens whole mounts were stained and imaged by confocal microscopy to investigate cell shape and organization. Results: We observed no obvious changes in lens size, shape, and biomechanical properties (stiffness and resilience) between the control and nonmuscle myosin IIA-E1841K mutant mice at 2 months of age. Surprisingly, we found misalignment and disorder of fiber cells in heterozygous and homozygous mutant lenses. Further analysis revealed misshapen equatorial epithelial cells that cause disorientation of the meridional rows before fiber cell differentiation in homozygous mutant lenses. Conclusions: Our data indicate that nonmuscle myosin IIA bipolar filament assembly is required for the precise alignment of the meridional rows at the lens equator and that the organization of lens fiber cells depends on the proper patterning of meridional row epithelial cells. These data also suggest that lens fiber cell organization and a hexagonal shape are not required for normal lens size, shape transparency, or biomechanical properties.


Asunto(s)
Cristalino , Miosina Tipo IIA no Muscular , Ratones , Animales , Humanos , Miosina Tipo IIA no Muscular/genética , Diferenciación Celular/fisiología , Células Epiteliales , Mutación
19.
Mol Biol Cell ; 34(7): ar71, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074945

RESUMEN

Nonmuscle myosin IIB (NMIIB) is considered a primary force generator during cell motility. Yet many cell types, including motile cells, do not necessarily express NMIIB. Given the potential of cell engineering for the next wave of technologies, adding back NMIIB could be a strategy for creating supercells with strategically altered cell morphology and motility. However, we wondered what unforeseen consequences could arise from such an approach. Here, we leveraged pancreatic cancer cells, which do not express NMIIB. We generated a series of cells where we added back NMIIB and strategic mutants that increase the ADP-bound time or alter the phosphorylation control of bipolar filament assembly. We characterized the cellular phenotypes and conducted RNA-seq analysis. The addition of NMIIB and the different mutants all have specific consequences for cell morphology, metabolism, cortical tension, mechanoresponsiveness, and gene expression. Major modes of ATP production are shifted, including alterations in spare respiratory capacity and the dependence on glycolysis or oxidative phosphorylation. Several metabolic and growth pathways undergo significant changes in gene expression. This work demonstrates that NMIIB is highly integrated with many cellular systems and simple cell engineering has a profound impact that extends beyond the primary contractile activity presumably being added to the cells.


Asunto(s)
Miosina Tipo IIA no Muscular , Miosina Tipo IIB no Muscular , Miosina Tipo IIB no Muscular/metabolismo , Reprogramación Celular , Citoesqueleto/metabolismo , Contracción Muscular , Fosforilación , Miosina Tipo IIA no Muscular/metabolismo
20.
Acta Biomater ; 159: 38-48, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36708850

RESUMEN

Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.


Asunto(s)
Actinas , Miosina Tipo IIA no Muscular , Epitelio , Movimiento Celular/fisiología , Citoesqueleto de Actina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA