Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103642

RESUMEN

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Asunto(s)
Adenosina Trifosfato , Pruebas de Enzimas , Miosina Tipo IIA no Muscular , Porcinos , ortoaminobenzoatos , Animales , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Bencilaminas/farmacología , Pruebas de Enzimas/métodos , Pruebas de Enzimas/normas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/metabolismo , Contracción Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , ortoaminobenzoatos/metabolismo , Uracilo/análogos & derivados , Uracilo/farmacología
2.
J Biol Chem ; 299(9): 105143, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562567

RESUMEN

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Asunto(s)
Empalme Alternativo , Encéfalo , Miosina Tipo IIA no Muscular , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Especificidad de Órganos
3.
Front Cell Infect Microbiol ; 12: 924424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250062

RESUMEN

Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein-protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP's interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.


Asunto(s)
Antimaláricos , Proteínas del Citoesqueleto/metabolismo , Malaria Falciparum , Proteínas de la Membrana/metabolismo , Miosina Tipo IIA no Muscular , Humanos , Lipoilación , Malaria Falciparum/parasitología , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación , Plasmodium falciparum , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo
4.
FASEB J ; 35(5): e21529, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33813778

RESUMEN

To identify hepatitis B virus (HBV)-related lncRNA(s), we previously examined the transcription profiles of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells by RNA deep sequencing and identified 38 upregulated long noncoding RNAs (lncRNAs). In the present study, the lncRNA MAFG-AS1 is investigated in detail because its gene is located adjacent to the MAFG gene, which is an important transcription factor involved in cell proliferation. The level of MAFG-AS1 is significantly higher in HCC tissue than in nontumor tissues. TCGA data show that the expression level of MAFG-AS1 is negatively correlated with survival of HCC patients. GEO cohort data show that compared with healthy tissues, the expression level of MAFG-AS1 is significantly higher in HBV-infected liver tissues. Real-time PCR and luciferase reporter assay data show that HBx can enhance the transcription of MAFG-AS1. Gain-of-function and loss-of-function experiments indicate that MAFG-AS1 promotes proliferation, migration, and invasion of HCC cells. Tumor formation assay results demonstrate that knockdown of MAFG-AS1 significantly inhibits cell proliferation in nude mice. Furthermore, MAFG-AS1 enhances the transcription of adjacent MAFG via E2F1. Additionally, MAFG-AS1 interacts with three subunits (MYH9, MYL12B, and MYL6) of nonmuscle myosin IIA (NM IIA). Knockdown of MAFG-AS1 inhibits ATPase activity of MYH9, interaction of NM IIA subunits, and cell cycle progression. Thus, the lncRNA MAFG-AS1 is upregulated by HBV and promotes proliferation and migration of HCC cells. Our findings suggest that MAFG-AS1 is a potential oncogene that may contribute to HBV-related HCC development.


Asunto(s)
Carcinoma Hepatocelular/patología , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción MafG/metabolismo , Miosina Tipo IIA no Muscular/química , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Transcripción MafG/antagonistas & inhibidores , Factor de Transcripción MafG/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Oligonucleótidos Antisentido/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales/genética
5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903241

RESUMEN

Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.


Asunto(s)
Células Endoteliales/citología , Miosina Tipo IIA no Muscular/genética , Seudópodos/genética , Proteína de Unión al GTP rac1/genética , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Extensiones de la Superficie Celular , Células Endoteliales/metabolismo , Ratones , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Miosina Tipo IIA no Muscular/química , Activación Transcripcional/genética
6.
Commun Biol ; 3(1): 568, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051581

RESUMEN

Gliding, a type of motility based on an actin-myosin motor, is specific to apicomplexan parasites. Myosin A binds two light chains which further interact with glideosome associated proteins and assemble into the glideosome. The role of individual glideosome proteins is unclear due to the lack of structures of larger glideosome assemblies. Here, we investigate the role of essential light chains (ELCs) in Toxoplasma gondii and Plasmodium falciparum and present their crystal structures as part of trimeric sub-complexes. We show that although ELCs bind a conserved MyoA sequence, P. falciparum ELC adopts a distinct structure in the free and MyoA-bound state. We suggest that ELCs enhance MyoA performance by inducing secondary structure in MyoA and thus stiffen its lever arm. Structural and biophysical analysis reveals that calcium binding has no influence on the structure of ELCs. Our work represents a further step towards understanding the mechanism of gliding in Apicomplexa.


Asunto(s)
Apicomplexa , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Secuencia de Aminoácidos , Apicomplexa/metabolismo , Calcio/química , Calcio/metabolismo , Secuencia Conservada , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Termodinámica
7.
Elife ; 92020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33046215

RESUMEN

Parasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a first order drug target against malaria. Here, we present the full-length structure of PfMyoA in two states of its motor cycle. We report novel interactions that are essential for motor priming and the mode of recognition of its two light chains (PfELC and MTIP) by two degenerate IQ motifs. Kinetic and motility assays using PfMyoA variants, along with molecular dynamics, demonstrate how specific priming and atypical sequence adaptations tune the motor's mechano-chemical properties. Supported by evidence for an essential role of the PfELC in malaria pathogenesis, these structures provide a blueprint for the design of future anti-malarials targeting both the glideosome motor and its regulatory elements.


Asunto(s)
Antimaláricos/farmacología , Miosina Tipo IIA no Muscular/química , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Plasmodium falciparum/metabolismo
8.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859024

RESUMEN

Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.


Asunto(s)
Antimaláricos/farmacología , Proteínas de la Membrana/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Péptidos/farmacología , Plasmodium falciparum/crecimiento & desarrollo , Secuencias de Aminoácidos , Antimaláricos/química , Sitios de Unión , Evaluación Preclínica de Medicamentos , Eritrocitos/parasitología , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/efectos de los fármacos , Miosina Tipo IIA no Muscular/química , Biblioteca de Péptidos , Péptidos/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
9.
Nat Commun ; 10(1): 3286, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337750

RESUMEN

Plasmodium parasites are obligate intracellular protozoa and causative agents of malaria, responsible for half a million deaths each year. The lifecycle progression of the parasite is reliant on cell motility, a process driven by myosin A, an unconventional single-headed class XIV molecular motor. Here we demonstrate that myosin A from Plasmodium falciparum (PfMyoA) is critical for red blood cell invasion. Further, using a combination of X-ray crystallography, kinetics, and in vitro motility assays, we elucidate the non-canonical interactions that drive this motor's function. We show that PfMyoA motor properties are tuned by heavy chain phosphorylation (Ser19), with unphosphorylated PfMyoA exhibiting enhanced ensemble force generation at the expense of speed. Regulated phosphorylation may therefore optimize PfMyoA for enhanced force generation during parasite invasion or for fast motility during dissemination. The three PfMyoA crystallographic structures presented here provide a blueprint for discovery of specific inhibitors designed to prevent parasite infection.


Asunto(s)
Miosina Tipo IIA no Muscular/fisiología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/fisiología , Movimiento Celular , Cristalografía por Rayos X , Eritrocitos/parasitología , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(45): E10548-E10555, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348763

RESUMEN

Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.


Asunto(s)
Miosina Tipo IIA no Muscular/química , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Antiprotozoarios/química , Antiprotozoarios/farmacología , Sitios de Unión , Diseño de Fármacos , Imitación Molecular , Mutación , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Toxoplasma/efectos de los fármacos
11.
J Biol Chem ; 293(38): 14850-14867, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30087119

RESUMEN

Nonmuscle myosin 2 (NM2) has three paralogs in mammals, NM2A, NM2B, and NM2C, which have both unique and overlapping functions in cell migration, formation of cell-cell adhesions, and cell polarity. Their assembly into homo- and heterotypic bipolar filaments in living cells is primarily regulated by phosphorylation of the N-terminally bound regulatory light chain. Here, we present evidence that the equilibrium between these filaments and single NM2A and NM2B molecules can be controlled via S100 calcium-binding protein interactions and phosphorylation at the C-terminal end of the heavy chains. Furthermore, we show that in addition to S100A4, other members of the S100 family can also mediate disassembly of homotypic NM2A filaments. Importantly, these proteins can selectively remove NM2A molecules from heterotypic filaments. We also found that tail phosphorylation (at Ser-1956 and Ser-1975) of NM2B by casein kinase 2, as well as phosphomimetic substitutions at sites targeted by protein kinase C (PKC) and transient receptor potential cation channel subfamily M member 7 (TRPM7), down-regulates filament assembly in an additive fashion. Tail phosphorylation of NM2A had a comparatively minor effect on filament stability. S100 binding and tail phosphorylation therefore preferentially disassemble NM2A and NM2B, respectively. These two distinct mechanisms are likely to contribute to the temporal and spatial sorting of the two NM2 paralogs within heterotypic filaments. The existence of multiple NM2A-depolymerizing S100 paralogs offers the potential for diverse regulatory inputs modulating NM2A filament disassembly in cells and provides functional redundancy under both physiological and pathological conditions.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas S100/metabolismo , Animales , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Mutación , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIB no Muscular/química , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Células Sf9 , Canales Catiónicos TRPM/metabolismo
12.
Gene ; 664: 152-167, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679756

RESUMEN

The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Trombocitopenia/congénito , Animales , Línea Celular , Sordera/genética , Humanos , Ratones , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Mutación , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Neoplasias/genética , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Fosforilación , Insuficiencia Renal Crónica/genética , Trombocitopenia/genética
13.
Biochem Biophys Res Commun ; 506(2): 394-402, 2018 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-29550471

RESUMEN

Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/química , Matriz Extracelular/química , Cadenas Pesadas de Miosina/química , Miosina Tipo II/química , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIB no Muscular/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Citocinesis/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Expresión Génica , Humanos , Mamíferos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Multimerización de Proteína
14.
J Biol Chem ; 292(47): 19469-19477, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28972141

RESUMEN

Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm Kd measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a Kd of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction.


Asunto(s)
Miosina Tipo IIA no Muscular/química , Proteínas Protozoarias/química , Toxoplasma/metabolismo , Animales , Calcio/metabolismo , Movimiento Celular , Cristalografía por Rayos X , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/metabolismo , Toxoplasma/crecimiento & desarrollo
15.
Nat Commun ; 8: 15839, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28643776

RESUMEN

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Asunto(s)
Actomiosina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Células Endoteliales de la Vena Umbilical Humana/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Tensión Superficial
16.
Chembiochem ; 17(19): 1829-1838, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27418229

RESUMEN

Dysregulation of Ca2+ -binding S100 proteins plays important role in various diseases. The asymmetric complex of Ca2+ -bound S100A4 with nonmuscle myosin IIA has high stability and highly increased Ca2+ affinity. Here we investigated the possible causes of this allosteric effect by NMR spectroscopy. Chemical shift-based secondary-structure analysis did not show substantial changes for the complex. Backbone dynamics revealed slow-timescale local motions in the H1 helices of homodimeric S100A4; these were less pronounced in the complex form and might be accompanied by an increase in dimer stability. Different mobilities in the Ca2+ -coordinating EF-hand sites indicate that they communicate by an allosteric mechanism operating through changes in protein dynamics; this must be responsible for the elevated Ca2+ affinity. These multilevel changes in protein dynamics as conformational adaptation allow S100A4 fine-tuning of its protein-protein interactions inside the cell during Ca2+ signaling.


Asunto(s)
Calcio/metabolismo , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Proteína de Unión al Calcio S100A4/química , Proteína de Unión al Calcio S100A4/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
17.
J Biol Chem ; 290(19): 12147-64, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25802338

RESUMEN

Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.


Asunto(s)
Miosina Tipo IIB no Muscular/química , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium knowlesi/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Calmodulina/química , Dicroismo Circular , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fluorescentes Verdes/química , Datos de Secuencia Molecular , Cadenas Ligeras de Miosina/química , Miosina Tipo IIA no Muscular/química , Péptidos/química , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
18.
Chem Biol Drug Des ; 86(4): 945-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25763457

RESUMEN

S100A4, a member of a calcium-regulated protein family, is involved in various cellular signaling pathways. From many studies over the last decade or so, it has become clear that it is involved in tumor metastasis, probably playing a determinative role. However, except the phenothiazine group of drugs, no significant inhibitor of S100A4 has been reported. Even the phenothiazines are very weak inhibitors of S100A4 action. In this study, we report design and development of a conformationally constrained helical peptide modeled on the non-muscle myosin peptide that binds to S100A4. This conformationally constrained peptide binds to S100A4 with a dissociation constant in the nanomolar range. We also synthesized a peptide for experimental control that bears several alanine mutations in the peptide-protein interface. We demonstrate that the former peptide specifically inhibits motility of H1299 and MCF-7 cells in a wound-healing assay. Structures of several S100A4-ligand complexes suggest that it may be possible to develop a smaller peptide-small molecule conjugate having high affinity for S100A4. Peptide-drug conjugates of this kind may play an important role in developing drug leads against this antimetastasis target.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Proteínas S100/antagonistas & inhibidores , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Células MCF-7 , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/farmacología , Miosina Tipo IIB no Muscular/química , Miosina Tipo IIB no Muscular/farmacología , Estructura Secundaria de Proteína , Proteína de Unión al Calcio S100A4 , Proteínas S100/metabolismo
19.
ChemMedChem ; 10(1): 134-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367834

RESUMEN

Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Fluorometría , Cinética , Simulación de Dinámica Molecular , Miosina Tipo IIA no Muscular/química , Resonancia Magnética Nuclear Biomolecular , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Transición de Fase , Unión Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/química
20.
Blood ; 124(16): 2564-8, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25185263

RESUMEN

Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.


Asunto(s)
Megacariocitos/citología , Cadenas Pesadas de Miosina/análisis , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/análisis , Miosina Tipo IIB no Muscular/metabolismo , Animales , Diferenciación Celular , Megacariocitos/metabolismo , Ratones , Ratones Transgénicos , Mitosis , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Poliploidía , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA