Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
1.
Microbiol Spectr ; 12(7): e0042324, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864648

RESUMEN

Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE: The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.


Asunto(s)
Antibacterianos , Vías Biosintéticas , Metabolómica , Novobiocina , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Antibacterianos/química , Novobiocina/análogos & derivados , Novobiocina/biosíntesis , Novobiocina/farmacología , Novobiocina/metabolismo , Cromatografía Liquida
2.
Acta Parasitol ; 69(2): 1275-1283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753101

RESUMEN

PURPOSE: Toxoplasmosis is caused by the parasite Toxoplasma gondii (T. gondii). In immunocompetent individuals, the infection is often asymptomatic; however, in expectant mothers and those with immune system deficiencies, complications may arise. Consequently, there is a need for new drugs that cause minimal damage to host cells. The purpose of this study was to investigate the in vitro antiparasitic efficacy of quinolone-coumarin hybrids QC1-QC12, derived from quinolone antibacterials and novobiocin, against T. gondii. METHODS: The derivatives were compared with novobiocin and ciprofloxacin during testing, with pyrimethamine used as a positive control. We conducted the MTT assay to examine the anti-toxoplasmic effects of the test compounds and novobiocin. Evaluation included the infection and proliferation indices, as well as the size and number of plaques, based on the viability of both healthy and infected cells. RESULTS: The in vitro assays revealed that QC1, QC3, QC6, and novobiocin, with selectivity indices (SIs) of 7.27, 13.43, and 8.23, respectively, had the least toxic effect on healthy cells and the highest effect on infected cells compared to pyrimethamine (SI = 3.05). Compared to pyrimethamine, QC1, QC3, QC6, and novobiocin Without having a significant effect on cell viability, demonstrated a significant effect on reducing in both infection index and proliferation index, in addition to reducing the quantity and dimensions of plaques ( P < 0.05). CONCLUSION: Based on our results, QC1, QC3, QC6, and novobiocin due to their significant therapeutic effects could be considered as potential new leads in the development of novel anti-Toxoplasma agents.


Asunto(s)
Novobiocina , Quinolonas , Toxoplasma , Toxoplasma/efectos de los fármacos , Novobiocina/farmacología , Animales , Quinolonas/farmacología , Quinolonas/química , Fluoroquinolonas/farmacología , Cumarinas/farmacología , Cumarinas/química , Antiprotozoarios/farmacología , Humanos , Supervivencia Celular/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612573

RESUMEN

With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.


Asunto(s)
Mycobacterium tuberculosis , Novobiocina/farmacología , Termodinámica , Antituberculosos/farmacología , Simulación de Dinámica Molecular , Adenosina Trifosfato
4.
PLoS Genet ; 19(11): e1011013, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917668

RESUMEN

Exposure of Escherichia coli to sub-inhibitory antibiotics stimulates biofilm formation through poorly characterized mechanisms. Using a high-throughput Congo Red binding assay to report on biofilm matrix production, we screened ~4000 E. coli K12 deletion mutants for deficiencies in this biofilm stimulation response. We screened using three different antibiotics to identify core components of the biofilm stimulation response. Mutants lacking acnA, nuoE, or lpdA failed to respond to sub-MIC cefixime and novobiocin, implicating central metabolism and aerobic respiration in biofilm stimulation. These genes are members of the ArcA/B regulon-controlled by a respiration-sensitive two-component system. Mutants of arcA and arcB had a 'pre-activated' phenotype, where biofilm formation was already high relative to wild type in vehicle control conditions, and failed to increase further with the addition of sub-MIC cefixime. Using a tetrazolium dye and an in vivo NADH sensor, we showed spatial co-localization of increased metabolic activity with sub-lethal concentrations of the bactericidal antibiotics cefixime and novobiocin. Supporting a role for respiratory stress, the biofilm stimulation response to cefixime and novobiocin was inhibited when nitrate was provided as an alternative electron acceptor. Deletion of a gene encoding part of the machinery for respiring nitrate abolished its ameliorating effects, and nitrate respiration increased during growth with sub-MIC cefixime. Finally, in probing the generalizability of biofilm stimulation, we found that the stimulation response to translation inhibitors, unlike other antibiotic classes, was minimally affected by nitrate supplementation, suggesting that targeting the ribosome stimulates biofilm formation in distinct ways. By characterizing the biofilm stimulation response to sub-MIC antibiotics at a systems level, we identified multiple avenues for design of therapeutics that impair bacterial stress management.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Escherichia coli/genética , Cefixima/farmacología , Novobiocina/farmacología , Nitratos , Biopelículas , Pruebas de Sensibilidad Microbiana
5.
Int J Nanomedicine ; 18: 6001-6019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901361

RESUMEN

Background: Olaparib, a poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor has demonstrated promising efficacy in patients with triple-negative breast cancer (TNBC) carrying breast cancer gene (BRCA) mutations. However, its impact on BRCA wild-type (BRCAwt) TNBC is limited. Hence, it is crucial to sensitize BRCAwt TNBC cells to olaparib for effective clinical practice. Novobiocin, a DNA polymerase theta (POLθ) inhibitor, exhibits sensitivity towards BRCA-mutated cancer cells that have acquired resistance to PARP inhibitors. Although both of these DNA repair inhibitors demonstrate therapeutic efficacy in BRCA-mutated cancers, their nanomedicine formulations' antitumor effects on wild-type cancer remain unclear. Furthermore, ensuring effective drug accumulation and release at the cancer site is essential for the clinical application of olaparib. Materials and Methods: Herein, we designed a progressively disassembled nanosystem of DNA repair inhibitors as a novel strategy to enhance the effectiveness of olaparib in BRCAwt TNBC. The nanosystem enabled synergistic delivery of two DNA repair inhibitors olaparib and novobiocin, within an ultrathin silica framework interconnected by disulfide bonds. Results: The designed nanosystem demonstrated remarkable capabilities, including long-term molecular storage and specific drug release triggered by the tumor microenvironment. Furthermore, the nanosystem exhibited potent inhibitory effects on cell viability, enhanced accumulation of DNA damage, and promotion of apoptosis in BRCAwt TNBC cells. Additionally, the nanosystem effectively accumulated within BRCAwt TNBC, leading to significant growth inhibition and displaying vascular regulatory abilities as assessed by magnetic resonance imaging (MRI). Conclusion: Our results provided the inaugural evidence showcasing the potential of a progressively disassembled nanosystem of DNA repair inhibitors, as a promising strategy for the treatment of BRCA wild-type triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Novobiocina/farmacología , Novobiocina/uso terapéutico , Reparación del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
6.
Neoplasia ; 44: 100935, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37717471

RESUMEN

Voltage-dependent anion-selective channel protein 1 (VDAC1) is the most abundant protein in the mitochondrial outer membrane and plays a crucial role in the control of hepatocellular carcinoma (HCC) progress. Our previous research found that cytosolic molecular chaperone heat shock protein 90 (Hsp90) interacted with VDAC1, but the effect of the C-terminal and N-terminal domains of Hsp90 on the formation of VDAC1 oligomers is unclear. In this study, we focused on the effect of the C-terminal domain of Hsp90 on VDAC1 oligomerization, ubiquitination, and VDAC1 channel activity. We found that Hsp90 C-terminal domain inhibitor Novobiocin promoted VDAC1 oligomerization, release of cytochrome c, and activated mitochondrial apoptosis pathway. Atomic coarse particle modeling simulation revealed C-terminal domain of Hsp90α stabilized VDAC1 monomers. The purified VDAC1 was reconstituted into a planar lipid bilayer, and electrophysiology experiments of patch clamp showed that the Hsp90 C-terminal inhibitor Novobiocin increased VDAC1 channel conductance via promoting VDAC1 oligomerization. The mitochondrial ubiquitination proteomics results showed that VDAC1 K274 mono-ubiquitination was significantly decreased upon Novobiocin treatment. Site-directed mutation of VDAC1 (K274R) weakened Hsp90α-VDAC1 interaction and increased VDAC1 oligomerization. Taken together, our results reveal that Hsp90 C-terminal domain inhibition promotes VDAC1 oligomerization and VDAC1 channel conductance by decreasing VDAC1 K274 mono- ubiquitination, which provides a new perspective for mitochondria-targeted therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Apoptosis , Novobiocina/farmacología , Neoplasias Hepáticas/genética , Ubiquitinación , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
7.
Nucleic Acids Res ; 51(18): 9920-9937, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665033

RESUMEN

Polymerase theta (Polθ) acts in DNA replication and repair, and its inhibition is synthetic lethal in BRCA1 and BRCA2-deficient tumor cells. Novobiocin (NVB) is a first-in-class inhibitor of the Polθ ATPase activity, and it is currently being tested in clinical trials as an anti-cancer drug. Here, we investigated the molecular mechanism of NVB-mediated Polθ inhibition. Using hydrogen deuterium exchange-mass spectrometry (HX-MS), biophysical, biochemical, computational and cellular assays, we found NVB is a non-competitive inhibitor of ATP hydrolysis. NVB sugar group deletion resulted in decreased potency and reduced HX-MS interactions, supporting a specific NVB binding orientation. Collective results revealed that NVB binds to an allosteric site to block DNA binding, both in vitro and in cells. Comparisons of The Cancer Genome Atlas (TCGA) tumors and matched controls implied that POLQ upregulation in tumors stems from its role in replication stress responses to increased cell proliferation: this can now be tested in fifteen tumor types by NVB blocking ssDNA-stimulation of ATPase activity, required for Polθ function at replication forks and DNA damage sites. Structural and functional insights provided in this study suggest a path for developing NVB derivatives with improved potency for Polθ inhibition by targeting ssDNA binding with entropically constrained small molecules.


Asunto(s)
Adenosina Trifosfatasas , ADN Polimerasa theta , Neoplasias , Novobiocina , Humanos , Adenosina Trifosfatasas/metabolismo , Replicación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Novobiocina/farmacología
8.
Bioorg Med Chem ; 92: 117381, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506559

RESUMEN

Gonorrhea has become a serious problem because the number of infected people is increasing and the multi-drug resistance of the causative bacteria, Neisseria gonorrhoeae, is progressing. To develop novel drugs against resistant N. gonorrhoeae, we focused on the antibiotic novobiocin (1). This natural product has a different mechanism of action from existing drugs for gonorrhea, which may make it effective against resistant strains. Actually, it was applied to resistant N. gonorrhoeae, and moderate antibacterial activity was confirmed. Based on this result, we investigated the development of an antigonococcal drug with 1 as the lead compound. The pharmacophore is thought to be the noviose sugar moiety, especially around the 3'-position, so we derivatized this part in order to improve antibacterial activity. As a result, we found that 5 with an methylpyrrole ester structure have a very potent antibacterial activity. This derivative also showed excellent antigonococcal activity against resistant strains in vitro, however it has poor water solubility and pharmacokinetics because it is the acidic lipid-soluble compound. Therefore, we considered introduction of a basic substituent into the molecule would result in an amphoteric compound with improved water solubility, and we investigated further derivatization. As a result of synthesizing various derivatives, we found 47 containing imidazole with strong antigonococcal activity and greatly improved water solubility. This derivative has also improved metabolism and blood concentration in vivo, and is expected to be orally absorbed. Based on these results, we believe that 47 is a very promising anti-gonococcal lead compound and has great potential for further development.


Asunto(s)
Gonorrea , Humanos , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Novobiocina/farmacología , Neisseria gonorrhoeae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Agua , Pruebas de Sensibilidad Microbiana
9.
PLoS One ; 18(4): e0284855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37098094

RESUMEN

Burkholderia multivorans causes opportunistic pulmonary infections and is intrinsically resistant to many antibacterial compounds including the hydrophobic biocide triclosan. Chemical permeabilization of the Pseudomonas aeruginosa outer membrane affects sensitization to hydrophobic substances. The purpose of the present study was to determine if B. multivorans is similarly susceptive suggesting that outer membrane impermeability properties underlie triclosan resistance. Antibiograms and conventional macrobroth dilution bioassays were employed to establish baseline susceptibility levels to hydrophobic antibacterial compounds. Outer membrane permeabilizers compound 48/80, polymyxin B, polymyxin B-nonapeptide, and ethylenediaminetetraacetic acid were used in attempts to sensitize disparate B. multivorans isolates to the hydrophobic agents novobiocin and triclosan, and to potentiate partitioning of the hydrophobic fluorescent probe 1-N-phenylnapthylamine (NPN). The lipophilic agent resistance profiles for all B. multivorans strains were essentially the same as that of P. aeruginosa except that they were resistant to polymyxin B. Moreover, they resisted sensitization to hydrophobic compounds and remained inaccessible to NPN when treated with outer membrane permeabilizers. These data support the notion that while both phylogenetically-related organisms exhibit general intrinsic resistance properties to hydrophobic substances, the outer membrane of B. multivorans either resists permeabilization by chemical modification or sensitization is mitigated by a supplemental mechanism not present in P. aeruginosa.


Asunto(s)
Complejo Burkholderia cepacia , Triclosán , Triclosán/farmacología , Polimixina B/farmacología , Pseudomonas aeruginosa , Novobiocina/farmacología , Antibacterianos/farmacología
10.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983048

RESUMEN

The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Streptococcus pneumoniae , Humanos , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Novobiocina/farmacología , ADN Bacteriano/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo
11.
Appl Microbiol Biotechnol ; 107(7-8): 2653-2660, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36897342

RESUMEN

We developed a simple new selective LB-based medium, named CYP broth, suitable for recovering long-term stored Y. pestis subcultures and for isolation of Y. pestis strains from field-caught samples for the Plague surveillance. It aimed to inhibit the growth contaminating microorganisms and enrich Y. pestis growth through iron supplementation. The performance of CYP broth on microbial growth from different gram-negative and gram-positive strains from American Type Culture Collection (ATCC®) and other clinical isolates, field-caught rodent samples, and more importantly, on several vials of ancient Y. pestis subcultures was evaluated. Additionally, other pathogenic Yersinia species such as Y. pseudotuberculosis and Y. enterocolitica were also successfully isolated with CYP broth. Selectivity tests and bacterial growth performance on CYP broth (LB broth supplemented with Cefsulodine, Irgasan, Novobiocin, nystatin and ferrioxamine E) were evaluated in comparison with LB broth without additive; LB broth/CIN, LB broth/nystatin and with traditional agar media including LB agar without additive, and LB agar and Cefsulodin-Irgasan-Novobiocin Agar (CIN agar) supplemented with 50 µg/mL of nystatin. Of note, the CYP broth had a recovery twofold higher than those of the CIN supplemented media or other regular media. Additionally, selectivity tests and bacterial growth performance were also evaluated on CYP broth in the absence of ferrioxamine E. The cultures were incubated at 28 °C and visually inspected for microbiological growth analysis and O.D.625 nm measurement between 0 and 120 h. The presence and purity of Y. pestis growth were confirmed by bacteriophage and multiplex PCR tests. Altogether, CYP broth provides an enhanced growth of Y. pestis at 28 °C, while inhibiting contaminant microorganisms. The media is a simple, but powerful tool to improve the reactivation and decontamination of ancient Y. pestis culture collections and for the isolation of Y. pestis strains for the Plague surveillance from various backgrounds. KEY POINTS: • The newly described CYP broth improves the recuperation of ancient/contaminated Yersinia pestis culture collections • CYP broth was also efficient in reducing environmental contamination in field-capture samples, improving Y. pestis isolation • CYP broth can also be used for the isolation of Y. enterocolitica and Y. pseudotuberculosis.


Asunto(s)
Peste , Yersinia pestis , Humanos , Agar , Peste/microbiología , Novobiocina/farmacología , Nistatina , Medios de Cultivo/farmacología , Cefsulodina/farmacología
12.
Brief Funct Genomics ; 22(2): 180-194, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36064602

RESUMEN

Antimicrobial resistance in bacteria poses major challenges in selection of the therapeutic regime for managing the infectious disease. There is currently an upsurge in the appearance of multiple drug resistance in bacterial pathogens and a decline in the discovery of novel antibiotics. DNA gyrase is an attractive target used for antibiotic discovery due to its vital role in bacterial DNA replication and segregation in addition to its absence in mammalian organisms. Despite the presence of successful antibiotics targeting this enzyme, there is a need to bypass the resistance against this validated drug target. Hence, drug development in DNA gyrase is a highly active research area. In addition to the conventional binding sites for the novobiocin and fluoroquinolone antibiotics, several novel sites are being exploited for drug discovery. The binding sites for novel bacterial type II topoisomerase inhibitor (NBTI), simocyclinone, YacG, Thiophene and CcdB are structurally and biochemically validated active sites, which inhibit the supercoiling activity of topoisomerases. The novel chemical moieties with varied scaffolds have been identified to target DNA gyrase. Amongst them, the NBTI constitutes the most advanced DNA gyrase inhibitor which are in phase III trial of drug development. The present review aims to classify the novel binding sites other than the conventional novobiocin and quinolone binding pocket to bypass the resistance due to mutations in the DNA gyrase enzyme. These sites can be exploited for the identification of new scaffolds for the development of novel antibacterial compounds.


Asunto(s)
Girasa de ADN , Novobiocina , Animales , Girasa de ADN/química , Girasa de ADN/genética , Girasa de ADN/metabolismo , Novobiocina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Inhibidores de Topoisomerasa II/química , Mamíferos/metabolismo
13.
Microbiol Spectr ; 10(6): e0250122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377953

RESUMEN

Escherichia coli serine hydroxymethyltransferase (GlyA) converts serine to glycine, and glyA mutants are auxotrophic for glycine. CycA is a transporter that mediates glycine uptake. Deleting glyA in E. coli strain W3110 led to activation of CysB, which was related to novobiocin (NOV) susceptibility. Moreover, deleting glyA resulted in increased sensitivity to NOV, and this could be reversed by high concentrations of glycine. Reverse mutants of ΔglyA were selected and one of them had a mutation in yrdC, the gene encoding threonylcarbamoyl-AMP synthase. Subsequent proteome analysis showed that deleting glyA led to increased expression of TcyP and TdcB, making this bacterium dependent on CycA for glycine assimilation. Furthermore, deleting cycA in a ΔglyA background caused a severe growth defect on Luria-Bertani medium, which could be complemented by high concentrations of exogenous glycine. Mutation of yrdC led to decreased expression of TdcB but increased expression of ThrA/B/C and LtaE, which favored the conversion of threonine to glycine and thus avoided the dependence on CycA. Correspondingly, deleting of tcyP, tdcB, or gshA could reverse the NOV-sensitive phenotype of ΔglyA mutants. Overexpression of cycA resulted in increased sensitivity to NOV, whereas deleting this gene caused NOV resistance. Moreover, overexpression of cycA led to increased accumulation of NOV upon drug treatment. Therefore, inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which enhanced the accumulation of NOV and then made the bacterium more sensitive to this drug. These findings broaden our understanding of glycine metabolism and mechanisms of NOV susceptibility. IMPORTANCE Novobiocin (NOV) has been used in clinical practice as an ATPase inhibitor for decades. However, because it has been withdrawn from the market, pharmaceutical companies are searching for other ATPase inhibitors. Thus, probing the mechanisms of susceptibility to NOV will be beneficial to those efforts. In this study, we showed that inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which accompanied the accumulation of NOV and thereby increased the sensitivity to this drug. To date, this is the first report demonstrating the linkage between glycine assimilation and NOV susceptibility, and it is also the first report showing that YrdC is able to modulate the metabolic flux of threonine.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Proteínas de Escherichia coli , Glicina , Adenosina Trifosfatasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/metabolismo , Novobiocina/farmacología , Treonina/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
Genes (Basel) ; 13(11)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36360308

RESUMEN

Rhodobacter capsulatus produces a bacteriophage-like particle called the gene transfer agent (RcGTA) that mediates horizontal gene transfer. RcGTA particles transfer random ~4.5-kb fragments of genomic DNA that integrate into recipient genomes by allelic replacement. This work addresses the effect of sub-inhibitory concentrations of antibiotics on gene transfer by RcGTA. A transduction assay was developed to test the effects of various substances on gene transfer. Using this assay, low concentrations of DNA gyrase inhibitors were found to increase the frequency of gene transfer. Novobiocin was studied in more detail, and it was found that this antibiotic did not influence the production or release of RcGTA but instead appeared to act on the recipient cells. The target of novobiocin in other species has been shown to be the GyrB subunit of DNA gyrase (a heterotetramer of 2GyrA and 2GyrB). R. capsulatus encodes GyrA and GyrB homologues, and a GyrB overexpression plasmid was created and found to confer resistance to novobiocin. The presence of the overexpression plasmid in recipient cells greatly diminished the novobiocin-mediated increase in gene transfer, confirming that this effect is due to the binding of novobiocin by GyrB. The results of this work show that antibiotics affect gene transfer in R. capsulatus and may be relevant to microbial genetic exchange in natural ecosystems.


Asunto(s)
Bacteriófagos , Rhodobacter capsulatus , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Regulación Bacteriana de la Expresión Génica , Novobiocina/farmacología , Novobiocina/metabolismo , Ecosistema , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología
15.
ACS Infect Dis ; 8(10): 2187-2197, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36098580

RESUMEN

Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.


Asunto(s)
Antibacterianos , Oxazolidinonas , Antibacterianos/química , Antibacterianos/farmacología , Eritromicina/farmacología , Bacterias Gramnegativas/genética , Linezolid , Lípido A , Novobiocina/farmacología , Oxazolidinonas/farmacología , Rifampin/farmacología , Vancomicina/farmacología
16.
Pharm Biol ; 60(1): 1449-1457, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35938505

RESUMEN

CONTEXT: A novobiocin derivative, XN4, has been shown to promote cell apoptosis in chronic myeloid leukaemia. OBJECTIVE: This study explores the mechanism by which XN4 promotes ferroptosis of gastric cancer (GC) cells. MATERIALS AND METHODS: Human GC SGC-7901 and BGC-823 cells were treated with different XN4 concentrations (0, 0.1, 0.5, 1.0, 5.0, and 10.0 µmol/L) to evaluate effects of XN4. Additionally, cells were pre-treated for 24 h with si-NOX4, for 1 h with the iron chelator deferoxamine mesylate (DFO) or for 1 h with the lipid peroxidation inhibitor liproxstatin-1 before being treated with XN4 to analyse the mechanism of XN4. RESULTS: XN4 increased cell death (IC50 values of XN4 on SGC-7901 and BGC-823 cells: 1.592 ± 0.14 µmol/L and 2.022 ± 0.19 µmol/L) and Fe2+ levels in SGC-7901 and BGC-823 cells. These effects of 2.0 µmol/L XN4 were abolished by 100 µmol/L DFO treatment. XN4 enhanced transferrin and transferrin receptor expression to induce Fe2+ accumulation. XN4 decreased mitochondrial membrane potentials in GC cells, similar to erastin. Additionally, XN4 increased MDA, hydrogen peroxide, and ROS levels, but diminished total glutathione levels. Liproxstatin-1 (200 nmol/L) nullified the effects of XN4 (2.0 µmol/L) on MDA levels and cell death. Moreover, GPX4 levels decreased, but NOX4 and ferroptosis-related protein PTGS2 levels increased in GC cells following XN4 treatment, which was nullified by NOX4 knockdown. DISCUSSION AND CONCLUSIONS: The pro-ferroptotic role of XN4 in GC might enable it to become a promising drug for GC treatment in the future despite the need for extensive research.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Apoptosis , Muerte Celular , Humanos , Peroxidación de Lípido , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/farmacología , Novobiocina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico
17.
Bioorg Med Chem ; 70: 116940, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905686

RESUMEN

KU-32 (2) and KU-596 (3), are first and second generation cytoprotective novologues that are derivatives of novobiocin (1), a heat shock protein 90 (Hsp90) C-terminal inhibitor. Although 2 and 3 improve mitochondrial bioenergetics and have demonstrated considerable cytoprotective activity, they contain a synthetically demanding noviose sugar. This issue was initially addressed by creating noviomimetics, such as KU-1202 (4), which replaced the noviose sugar with ether-linked cyclohexyl derivatives that retained some cytoprotective potential due to their ability to increase mitochondrial bioenergetics. Based on structure-activity relationship (SAR) studies of KU-1202 (4), the current study investigated 3'- and 4'-substituted cyclohexyl scaffolds as noviomimetics and determined their efficacy at increasing mitochondrial bioenergetic as a marker for cytoprotective potential.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Novobiocina , Mitocondrias/metabolismo , Novobiocina/farmacología , Respiración , Azúcares
18.
Microb Pathog ; 172: 105514, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35537594

RESUMEN

BACKGROUND: Vibrio cholera (V. cholera) is a facultative pathogen that colonizes the small intestine and produces cholerae toxin as the primary virulence factor that causes cholera and fatal diarrhea in humans. In recent decades, V. cholera has emerged as a notorious multidrug-resistant enteric pathogen. This meta-analysis estimated the pooled proportion of V. cholera antimicrobial resistance against RNA and DNA effective antibiotics. METHOD: A systematic search was performed for relevant literature until 05 June 2021 in PubMed, Scopus, Embase, and Web of Science databases. Freeman-Tukey double arcsine transformation was performed to estimate weighted pooled resistance (WPR). RESULTS: The meta-analysis were included 164 articles. The WPR of V. cholera were as follows 76% [67,84] to furazolidone, 65% [29,94] to nitrofurantoin, 55% [44,66] to nalidixic acid, 10% [2,23] to rifampicin, 4%(0, 12) to novobiocin, 4% [2,6] to norfloxacin, 3% [1,4] to ciprofloxacin, 1%(0, 3) to sparofloxacin, 0%(0, 3) to levofloxacin, 0%(0, 2) to ofloxacin, 0%(0, 0) to gatifloxacin. CONCLUSION: V. cholera is a severe problem in Asia and Africa, especially in South Asian countries. The resistance patterns are various in geographical regions. novobiocin 0% (0, 0), and ofloxacin 0% (0, 1) in Africa, gatifloxacin 0% (0, 0), and levofloxacin 0% (0, 6) in Asia and ciprofloxacin 0% (0, 2) in North America are most effective antibiotis. The resistance rate to furazolidone, nalidixic acid, nitrofurantoin, and cephalothin has increased over the years. Monitoring antibiotic resistance and prescribing an appropriate antibiotic is vital to control resistance.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Vibrio cholerae , Humanos , Antibacterianos/farmacología , Cefalotina/farmacología , Cólera/tratamiento farmacológico , Toxina del Cólera/genética , Ciprofloxacina/farmacología , Furazolidona/farmacología , Gatifloxacina/farmacología , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Ácido Nalidíxico/farmacología , Nitrofurantoína/farmacología , Norfloxacino/farmacología , Novobiocina/farmacología , Rifampin/farmacología , Vibrio cholerae/efectos de los fármacos , Factores de Virulencia
19.
Arch Pharm (Weinheim) ; 355(7): e2100516, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35363388

RESUMEN

A series of hybridized pyrrolidine compounds with a 1,2,4-oxadiazole moiety were synthesized to develop effective molecules against the enzymes DNA gyrase and topoisomerase IV (Topo IV). Compounds 8-20 were developed based on a previously disclosed series of compounds from our lab, but with small structural modifications in the hopes of increasing the compounds' biological activity. In comparison to novobiocin, with IC50 = 170 nM, the findings of the DNA gyrase inhibitory assay revealed that compounds 16 and 17 were the most potent of all synthesized derivatives, with IC50 values of 180 and 210 nM, respectively. Compound 17 had the strongest inhibitory effect against Escherichia coli Topo IV of all the synthesized compounds, with an IC50 value of 13 µM, which was comparable to novobiocin (IC50 = 11 µM). Therefore, hybrids 16 and 17 appeared to be potential dual-target inhibitors. In the minimal inhibitory concentration (MIC) assays, compound 17 outperformed ciprofloxacin against E. coli, with an MIC of 55 ng/ml, compared to 60 ng/ml for ciprofloxacin. Finally, the docking study, along with the in vitro experiments, supports our promising approach to effectively develop potent leads for further optimization as dual DNA gyrase and Topo IV inhibitors.


Asunto(s)
Topoisomerasa de ADN IV , Inhibidores de Topoisomerasa II , Antibacterianos/química , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Girasa de ADN , Escherichia coli , Pruebas de Sensibilidad Microbiana , Novobiocina/farmacología , Oxadiazoles/farmacología , Pirrolidinas/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
20.
J Biomater Sci Polym Ed ; 33(3): 299-312, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34559588

RESUMEN

Today, drug-resistant bacteria represent a significant problem worldwide. In fact, bacteria are becoming resistant even to newly developed antibiotics. Therefore, there is an urgent need to develop antibiotics to which bacteria cannot become resistant. In this study, antimicrobial polymers to which bacteria cannot develop resistance were prepared from 6-aminohexyl methacrylamide and N-isopropyl acrylamide. The polymers with molecular weights of the order of 105 showed little antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as low toxicity. On the other hand, polymers with lower molecular weights (of the order of 104) did show antimicrobial activity against S. aureus and E. coli. These polymers were combined with novobiocin to investigate the combined usage effects against E. coli. The combined usage of novobiocin and the low-molecular-weight polymers reduced the minimum inhibitory concentration, which was less than 0.0625 µg/mL against E. coli. This result indicates that the combination is useful for increasing the efficacy of antibiotics and broadening their antimicrobial spectrum. Furthermore, the results showed the possibility that the antimicrobial polymers serve not only as antibiotics to which bacteria have not developed resistance but also as adjuvants for other antibiotics.


Asunto(s)
Antiinfecciosos , Novobiocina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Cationes/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Novobiocina/farmacología , Polímeros/farmacología , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...