Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Med Radiat Sci ; 71(2): 167-169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641981

RESUMEN

Quality management systems (QMS) in nuclear medicine is an essential component of the Quality program and is instrumental in the safe delivery of a high standard clinical service. The IAEA QUANUM program is a nuclear medicine specific audit program that can be used to assess the standards of a nuclear medicine department and its service delivery. Regular internal and external audits are encouraged as part of the QMS.


Asunto(s)
Medicina Nuclear , Medicina Nuclear/normas , Humanos , Servicio de Medicina Nuclear en Hospital/normas , Servicio de Medicina Nuclear en Hospital/organización & administración , Garantía de la Calidad de Atención de Salud/normas
3.
Hell J Nucl Med ; 23(3): 349-353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33306764

RESUMEN

COVID-19 pandemic is having a strong impact on healthcare providers around the world, by refocusing and reducing non-essential medical activities. Nuclear medicine departments among others, have been reorganizing and reprioritizing diagnostic and theragnostic procedures. This reorganizing had a negative impact on the supply of positron emission tomography (PET) services to oncologic patients, whose health was affected. We herein present the PET findings in three different cancer scenarios in which disease course was dramatically affected by the COVID-19 outbreak.


Asunto(s)
COVID-19/epidemiología , Neoplasias/epidemiología , Tomografía de Emisión de Positrones , Progresión de la Enfermedad , Humanos , Control de Infecciones/métodos , Neoplasias/diagnóstico por imagen , Servicio de Medicina Nuclear en Hospital/organización & administración , Servicio de Medicina Nuclear en Hospital/estadística & datos numéricos , Servicio de Oncología en Hospital/organización & administración , Servicio de Oncología en Hospital/estadística & datos numéricos
5.
Hell J Nucl Med ; 23 Suppl: 15-20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860391

RESUMEN

The outbreak and spreading of the COVID-19 pandemic have affected billions of people around the world, severely disrupting many aspects of their lives. Although not at the frontline of the pandemic response, Nuclear Medicine departments have to adopt their clinical routine to the new environment. A series of protective measures, including among others spatial arrangements to promote social distancing, meticulous hand hygiene and use of personal protective equipment, workload reduction, patient screening at admission and examination protocol adjustments, have to be adopted in order to minimize the risk of spreading the infection and ensure the safety of both their patients and staff. As the pandemic seems to slowly recede, the valuable experience gained should help everyone be much better prepared for a possible new outbreak.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Control de Infecciones/métodos , Servicio de Medicina Nuclear en Hospital/organización & administración , Neumonía Viral/epidemiología , COVID-19 , Creación de Capacidad , Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/transmisión , Utilización de Instalaciones y Servicios/normas , Utilización de Instalaciones y Servicios/estadística & datos numéricos , Humanos , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/normas , Servicio de Medicina Nuclear en Hospital/provisión & distribución , Pandemias , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto
6.
Hell J Nucl Med ; 23 Suppl: 26-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860393

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic is the biggest shock in decades to the well developed healthcare system and resources worldwide. Although there was a wide variation in the level of preparedness, the transition was tough even for the most renowned healthcare systems. Increasing the capacity and adapting healthcare for the needs of COVID-19 patients is described by the WHO as a fundamental outbreak response measure. However, while the system is preoccupied with a pandemic infection, patients suffering from other illnesses are in high risk to get infected, also being compromised by the imperative shift in medical resources and significant restrictions on routine medical care. For example patients with cardiovascular disease and others referred for nuclear cardiology procedures are frequently greater than 60 years of age and have other comorbidities (e.g. hypertension, diabetes, chronic lung disease, and chronic renal disease) that place them at a high-risk for adverse outcomes with COVID-19, providing unique challenges for their management in healthcare facilities, as well as for the care of health care personnel. Numerous medical specialty societies and governmental agencies issued guidelines aiming at the specification of preventive measures and amendments in everyday clinical practice during the escalation and peak of the pandemic. In accordance, the American Society of Nuclear Cardiology (ASNC) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI), issued a common statement in late March 2020, which was provided as an initial response to this pandemic, offering specific recommendations for adapting nuclear cardiology practices at each step in a patient's journey through the lab-for inpatients, outpatients and emergency department patients. One of the main recommendations was cancelling or delaying of all non-urgent nuclear cardiology studies. As COVID-19 follows a different time course in different geographic regions and lockdowns begin to lift in many countries, the issue of re-establishment of non-emergent care, in nuclear cardiology laboratories amongst others, has to be addressed in a watchful and balanced way, keeping in mind that the COVID-19 crisis is far from over. Furthermore measuring what is happening in the current crisis is essential to ensuring preparedness for a possible next wave of the pandemic. Recently the ASNC, SNMMI, the International Atomic Energy Agency (IAEA) and the Infectious Disease Society of America (IDSA), issued an information statement which describes a careful approach to reestablishment of non-emergent care in nuclear cardiology laboratories reflecting diverse settings from the United States and worldwide. In the same spirit it is also the reintroduction guidance issued by North American Cardiovascular Societies. In this paper we provide a synopsis of the basic steps of adapting nuclear cardiology practice in the era of COVID-19 in order to balance between the risk of viral transmission while also providing crucial cardiovascular assessments for our patients.


Asunto(s)
Servicio de Cardiología en Hospital/normas , Infecciones por Coronavirus/transmisión , Control de Infecciones/métodos , Servicio de Medicina Nuclear en Hospital/normas , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto , COVID-19 , Servicio de Cardiología en Hospital/organización & administración , Infecciones por Coronavirus/epidemiología , Transmisión de Enfermedad Infecciosa/prevención & control , Prioridades en Salud , Humanos , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/organización & administración , Pandemias , Neumonía Viral/epidemiología
7.
Hell J Nucl Med ; 23 Suppl: 31-34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860394

RESUMEN

The global COVID-19 health and economic crisis has forced people to adopt challenging rules of social distancing and self-isolation. Health care staff has been advised to change working routines to keep themselves and their patients safe. Radionuclide therapy has had an increasing role in clinical practice. Most therapeutic radionuclide procedures have applications in oncology. Cancer patients are an especially fragile and vulnerable population with higher risk due to co morbidities and immunosuppression. COVID-19 is another risk that must be considered in treatment planning. Therapeutic, prophylactic, and supportive interventions may require changes for these patients. The most common radionuclide therapies involve patients with differentiated thyroid cancer (DTC) who need radioiodine therapy (RAI), patients with neuroendocrine tumours (NETs) who need peptide receptor radionuclide therapy (PRRT), patients with hepatocellular carcinoma (HCC) who need therapy with radiolabelled microspheres, and patients with prostate cancer and bone metastasis who need radionuclide palliative therapy. If infected, cancer patients could be at a higher risk for serious COVID-19 disease. Treatment decisions for thyroid cancer and NETs are challenging in this environment. Any decision to postpone therapy must be carefully considered, balancing risks and benefits. A risk of worsened prognosis due to delayed or suboptimal cancer treatment must be weighed against the risk of severe COVID-19 illness.


Asunto(s)
Infecciones por Coronavirus/transmisión , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/normas , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto , Radioterapia/normas , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Control de Infecciones/métodos , Neoplasias/radioterapia , Servicio de Medicina Nuclear en Hospital/organización & administración , Servicio de Medicina Nuclear en Hospital/provisión & distribución , Pandemias , Neumonía Viral/epidemiología , Radioterapia/métodos
8.
Hell J Nucl Med ; 23 Suppl: 35-40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860395

RESUMEN

The coronavirus disease 2019 (COVID-19) global pandemic poses a significant challenge to the national health systems. Not only China, the first country that experienced the health crisis since last December, but the rest of the world, is facing an unprecedented global health crisis, the most serious crisis in a century, with social and economic impact. However, the most important impact of the new pandemic is the human impact. Till 4th of June 2020, coronavirus SARS-CoV-2, causing COVID-19 disease, has infected more than 65000.000 people and has been responsible for more than 386000 deaths globally. The first priority of public health authorities is to contain and mitigate the spread and infection rate of the coronavirus SARS-CoV-2, distributing the number of infections over time and, if possible, reduce the incidence of the disease (COVID-19) it causes. A critical task for health systems confronted with the spread of the coronavirus is to protect the health of all citizens, so this requires that both diagnosis/testing and appropriate care should be readily available, affordable, and provided in a safe environment. The health care systems of many developed countries failed to demonstrate a satisfactory response to the increased demand for acute care hospital beds, ventilators, emergency services, diagnostics tests, support equipment for their COVID-19 patients, availability of essential medicines, protective equipment for their staff etc. Nuclear Medicine (NM) departments and their staff, in spite of the fact that not being in the front line of the pandemic response, have experienced a dramatic alteration in their daily clinical activity, trying to adapt their clinical routine to the new environment. There are several issued guidance from national and international organizations, trying to help to cope with suspected or verified COVID-19 patients. Patients with cancer are thought to be more susceptible and have higher morbidity and mortality rates from COVID-19 than the general population. In the current article, our aim is to present measures, guidance and thoughts that should be considered for the cancer patients.


Asunto(s)
Infecciones por Coronavirus/transmisión , Control de Infecciones/métodos , Neoplasias/radioterapia , Servicio de Medicina Nuclear en Hospital/normas , Neumonía Viral/transmisión , Radioterapia/métodos , COVID-19 , Infecciones por Coronavirus/epidemiología , Prioridades en Salud , Humanos , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/economía , Servicio de Medicina Nuclear en Hospital/organización & administración , Pandemias , Neumonía Viral/epidemiología , Guías de Práctica Clínica como Asunto , Radioterapia/normas
9.
Hell J Nucl Med ; 23 Suppl: 21-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860392

RESUMEN

On December 29, 2019, a hospital in the City of Wuhan, Hubei Province, in Central China, admitted four individuals with pneumonia. The hospital reported this occurrence to the local center for disease control (CDC), which lead Wuhan CDC staff to initiate a field investigation with a retrospective search for pneumonia patients. On December 31, 2019, the World Health Organization (WHO) was alerted by the Chinese authorities for several cases of pneumonia of unknown origin in the City of Wuhan. On January 7, 2020, a novel virus was identified as the causative agent, belonging to the Coronaviridae family (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2). Within the same month, the virus spread to other provinces of China, as well as a number of neighbouring countries. On February 11, 2020, the WHO announced that the SARS-CoV-2 - caused infection would be called coronavirus disease 2019 (COVID-19). On February 15, 2020, the first death due to COVID-19 in Europe was reported; a Chinese tourist who died in France. The first COVID-19 case was diagnosed in Greece on February 26th. The WHO declared COVID-19 a pandemic on 11 March 2020. On March 12th, movie theaters, gyms and courtrooms were closed in Greece and on March 13th, with 190 confirmed cases and 1 death, malls, cafés, restaurants, bars, beauty parlors, museums and archaeological sites were also closed. So far, COVID-19 pandemic has affected the way people live and work globally, and has resulted in extreme strain on the healthcare systems worldwide. Most of the nuclear medicine studies are performed on an out-patient basis. Therefore, without effective implementation of the required preventive measures, there is a significant risk for viral transmission when visiting nuclear medicine departments, particularly in periods of high community spread.


Asunto(s)
Infecciones por Coronavirus/transmisión , Control de Infecciones/métodos , Servicio de Medicina Nuclear en Hospital/normas , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto , Cintigrafía/normas , COVID-19 , Infecciones por Coronavirus/epidemiología , Prioridades en Salud , Humanos , Control de Infecciones/normas , Enfermedades Pulmonares/diagnóstico por imagen , Neoplasias/diagnóstico por imagen , Servicio de Medicina Nuclear en Hospital/organización & administración , Pandemias , Neumonía Viral/epidemiología , Cintigrafía/métodos
10.
Hell J Nucl Med ; 23 Suppl: 41-50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860396

RESUMEN

Since its outbreak in Wuhan, China the SARS-CoV-2 has become a public health emergency of international concern, impacting all areas of daily life, including medical care. Although not in the front line nuclear medicine practice should adjust their standard operating procedures. The adaptations and the flexibility that nuclear thyroidology, among other fields of nuclear medicine, should show during the pandemic, must focus not only in minimizing the risk of infection to staff, patients, and family members, but also in controlling the transmission of the virus while continuing to provide health care services which do not jeopardize patients' prognosis and quality of life. Favorable prognosis and indolent symptoms of most cases of thyroid diseases, allows postponements and rescheduling as well as alternative procedures, provided that they are cautiously considered for each case individually. The objective of the current paper is to provide guidance on how diagnostic and therapeutic management of patients with thyroid diseases can be safely and effectively adjusted during pandemic, in nuclear medicine settings.


Asunto(s)
Infecciones por Coronavirus/transmisión , Prioridades en Salud , Control de Infecciones/métodos , Servicio de Medicina Nuclear en Hospital/organización & administración , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto , Enfermedades de la Tiroides/diagnóstico por imagen , COVID-19 , Infecciones por Coronavirus/epidemiología , Toma de Decisiones , Humanos , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/normas , Pandemias , Neumonía Viral/epidemiología , Enfermedades de la Tiroides/diagnóstico , Enfermedades de la Tiroides/radioterapia
11.
Hell J Nucl Med ; 23 Suppl: 51-56, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32860397

RESUMEN

In December 2019 a new ß-CoV, Severe Acute Respiratory Coronavirus- 2 (SARS-CoV-2), has been identified in Wuhan Hubei Province, China. Within a few months it spread rapidly to more than 114 countries and the disease, Coronavirus disease 2019 (COVID-19), was declared pandemic on 11th February 2020 by the World Health Organization (WHO). Until 20 June 2020 8:09 am, 8,465,085 cases of COVID-19 were confirmed globally, with 454,258 deaths. The first incidence in Greece was documented on 26 February 2020 in Thessaloniki and up to 20 June 2020 8:09 am, 3,227 confirmed cases of COVID-19 were reported, with 188 deaths. At the time of writing USA and Brazil, are the countries with the highest disease burden. Governments have imposed a variety of suggestions and restrictions in order to control the spread of the virus, focusing mainly on social distancing, self-isolation, personal hygiene and personal protective equipment (PPE). Greece was one of the countries that implemented early drastic measures thus succeeding in controlling the virus transmission; having a profound economical effect though.


Asunto(s)
Infecciones por Coronavirus/transmisión , Control de Infecciones/métodos , Servicio de Medicina Nuclear en Hospital/normas , Neumonía Viral/transmisión , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Guías de Práctica Clínica como Asunto , Citas y Horarios , COVID-19 , Infecciones por Coronavirus/epidemiología , Toma de Decisiones , Humanos , Control de Infecciones/normas , Servicio de Medicina Nuclear en Hospital/organización & administración , Pandemias , Neumonía Viral/epidemiología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
13.
Eur J Nucl Med Mol Imaging ; 47(11): 2487-2492, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700058
14.
Health Care Manag Sci ; 23(4): 520-534, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32594285

RESUMEN

External-beam radiotherapy treatments are delivered by a linear accelerator (linac) in a series of high-energy radiation sessions over multiple days. With the increase in the incidence of cancer and the use of radiotherapy (RT), the problem of automatically scheduling RT sessions while satisfying patient preferences regarding the time of their appointments becomes increasingly relevant. While most literature focuses on timeliness of treatments, several Dutch RT centers have expressed their need to include patient preferences when scheduling appointments for irradiation sessions. In this study, we propose a mixed-integer linear programming (MILP) model that solves the problem of scheduling and sequencing RT sessions considering time window preferences given by patients. The MILP model alone is able to solve the problem to optimality, scheduling all sessions within the desired window, in reasonable time for small size instances up to 66 patients and 2 linacs per week. For larger centers, we propose a heuristic method that pre-assigns patients to linacs to decompose the problem in subproblems (clusters of linacs) before using the MILP model to solve the subproblems to optimality in a sequential manner. We test our methodology using real-world data from a large Dutch RT center (8 linacs). Results show that, combining the heuristic with the MILP model, the problem can be solved in reasonable computation time with as few as 2.8% of the sessions being scheduled outside the desired time window.


Asunto(s)
Citas y Horarios , Prioridad del Paciente , Radioterapia , Humanos , Países Bajos , Servicio de Medicina Nuclear en Hospital/organización & administración , Aceleradores de Partículas , Programación Lineal , Factores de Tiempo
17.
Eur J Nucl Med Mol Imaging ; 47(8): 1779-1786, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32318782
18.
Acta Oncol ; 59(5): 503-510, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31973620

RESUMEN

Background: The IAEA recommends a quality assurance program in radiotherapy to ensure safe and effective treatments. In this study, radiotherapy departments were surveyed on their current practice including the extent and depth of quality assurance activities.Methods: Radiotherapy departments were voluntarily surveyed in three stages, firstly, in basic facility information, secondly, in quality assurance activities and treatment techniques, and thirdly, in a snapshot of quality assurance, departmental and treatment activities.Results: The IAEA received completed surveys from 381 radiotherapy departments throughout the world with 100 radiotherapy departments completing all three surveys. Dominant patterns were found in linac-based radiotherapy with access to treatment planning systems for 3D-CRT and 3D imaging. Staffing levels for major staff groups were on average in the range recommended by the IAEA. The modal patient workload per EBRT unit was as expected in the range of 21-30 patients per day, however significant instances of high workload (more than 50 patients per day per treatment unit) were reported. Staffing levels were found to correlate with amount of treatment equipment and patient workload. In a self-assessment of quality assurance performance, most radiotherapy departments reported that they would perform at least 60% of the quality assurance activities itemized in the second survey, with particular strength in equipment quality control. In a snapshot survey of quality assurance performance, again equipment quality control practice was well developed, particularly for the treatment equipment.Conclusions: The IAEA surveys provide a snapshot of current radiotherapy practice including quality assurance activities.


Asunto(s)
Auditoría Médica/estadística & datos numéricos , Neoplasias/radioterapia , Servicio de Medicina Nuclear en Hospital/organización & administración , Oncología por Radiación/organización & administración , Humanos , Auditoría Médica/organización & administración , Auditoría Médica/normas , Servicio de Medicina Nuclear en Hospital/normas , Servicio de Medicina Nuclear en Hospital/estadística & datos numéricos , Aceleradores de Partículas/normas , Oncología por Radiación/instrumentación , Oncología por Radiación/normas , Oncología por Radiación/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia Conformacional/normas , Radioterapia Conformacional/estadística & datos numéricos , Encuestas y Cuestionarios/estadística & datos numéricos
19.
Appl Radiat Isot ; 134: 108-111, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29249627

RESUMEN

Three comparison exercises have been performed in 1996, 1999 and 2015 with 123I to assess the UK hospitals measurement capabilities using radionuclide calibrators for this particular radionuclide. The exercise performed in 1996 showed that only 62% of the participants could measure the solution to within 10% of the standardised value and only 28% could measure within 5% of the certificated value. The intercomparison exercise performed in 1999 showed no improvement in the measurement capability, with only 66% of the participants measuring to within 10% of the standardised value. The exercise performed in 2015 showed great improvement in the hospitals measurement capability, 94% of participants reported results within 10% of the certificated activity and 85% of the participants reported results within the 5% of the reported activity. The intercomparison exercises are an important way to identify possible measurement problems within the medical community. Additionally, the intercomparison exercises provide hospitals with traceability to national primary standards and improve measurement capability within the Nuclear Medicine community.


Asunto(s)
Hospitales Públicos/organización & administración , Radioisótopos de Yodo/análisis , Servicio de Medicina Nuclear en Hospital/organización & administración , Control de Calidad , Radiofármacos/análisis , Calibración , Hospitales Públicos/normas , Humanos , Radioisótopos de Yodo/normas , Servicio de Medicina Nuclear en Hospital/normas , Radiofármacos/normas , Manejo de Especímenes , Jeringas , Incertidumbre , Reino Unido
20.
Rev Esp Med Nucl Imagen Mol ; 36(2): 99-102, 2017.
Artículo en Inglés, Español | MEDLINE | ID: mdl-27349327

RESUMEN

AIM: To perform an analysis of non-conformities (NC) registered between 2012 and 2015, as a part of the review process of the Quality Management System of our Radiopharmacy Unit. MATERIAL AND METHODS: Non-conformities registered in the Radiopharmacy Unit in the period 2012-2015 are analyzed and sorted by their impact on the process (critical, major, and minor), cause/origin of the non-conformity, and nature of radiopharmaceutical (PET vs. SPECT). RESULTS: A decrease in the NC of 20% per year is observed, especially in PET radiopharmaceuticals. Non-conformities in SPECT make up about 62-84% of the total of the NC, mainly related to the high number of doses prepared and not administered, which is about 1.5-3% in the ratio of non-administered/administered per year. CONCLUSIONS: Analysis of the NC can be considered as a useful indicator in assessment of quality assurance, and in our particular case, the decrease in the registration of NC indicates effectiveness in the corrective and preventive actions implemented.


Asunto(s)
Adhesión a Directriz , Servicio de Medicina Nuclear en Hospital , Servicio de Farmacia en Hospital , Radiofármacos , Gestión de la Calidad Total , Utilización de Medicamentos , Servicio de Medicina Nuclear en Hospital/organización & administración , Servicio de Medicina Nuclear en Hospital/normas , Servicio de Farmacia en Hospital/organización & administración , Servicio de Farmacia en Hospital/normas , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , España , Tomografía Computarizada de Emisión de Fotón Único , Gestión de la Calidad Total/legislación & jurisprudencia , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA