Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.008
2.
Int J Immunopathol Pharmacol ; 38: 3946320241250293, 2024.
Article En | MEDLINE | ID: mdl-38712748

BACKGROUND: Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE: The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS: Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION: A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.


Glucose , Lipid Metabolism , Neoplasms , Nervous System Diseases , Nucleotides , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Nervous System Diseases/metabolism , Nucleotides/metabolism , Glucose/metabolism , Animals , Signal Transduction
3.
Arch Microbiol ; 206(6): 259, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739151

Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.


Antioxidants , Cordyceps , Fermentation , Nucleotides , Schisandra , Cordyceps/metabolism , Cordyceps/chemistry , Schisandra/chemistry , Schisandra/metabolism , Antioxidants/metabolism , Antioxidants/analysis , Nucleotides/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration
4.
Biomolecules ; 14(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38785954

In the cell, DNA polymerase ß (Polß) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polß can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polß variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polß functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.


Amino Acid Substitution , DNA Polymerase beta , Molecular Dynamics Simulation , Polymorphism, Single Nucleotide , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics , DNA Polymerase beta/chemistry , Humans , Kinetics , DNA Repair/genetics , Nucleotides/metabolism , Nucleotides/genetics
5.
Sci Rep ; 14(1): 11540, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773176

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Oligonucleotides, Antisense , Toll-Like Receptor 9 , Toll-Like Receptor 9/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Humans , CpG Islands , Animals , Mice , Nucleotides/metabolism , Nucleotides/chemistry , Sugars/metabolism , Sugars/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology
6.
Sci Rep ; 14(1): 7885, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570698

SbtB is a PII-like protein that regulates the carbon-concentrating mechanism (CCM) in cyanobacteria. SbtB proteins can bind many adenyl nucleotides and possess a characteristic C-terminal redox sensitive loop (R-loop) that forms a disulfide bridge in response to the diurnal state of the cell. SbtBs also possess an ATPase/ADPase activity that is modulated by the redox-state of the R-loop. To investigate the R-loop in the cyanobacterium Synechocystis sp. PCC 6803, site-specific mutants, unable to form the hairpin and permanently in the reduced state, and a R-loop truncation mutant, were characterized under different inorganic carbon (Ci) and light regimes. Growth under diurnal rhythm showed a role of the R-loop as sensor for acclimation to changing light conditions. The redox-state of the R-loop was found to impact the binding of the adenyl-nucleotides to SbtB, its membrane association and thereby the CCM regulation, while these phenotypes disappeared after truncation of the R-loop. Collectively, our data imply that the redox-sensitive R-loop provides an additional regulatory layer to SbtB, linking the CO2-related signaling activity of SbtB with the redox state of cells, mainly reporting the actual light conditions. This regulation not only coordinates CCM activity in the diurnal rhythm but also affects the primary carbon metabolism.


Carbon , Synechocystis , Carbon/metabolism , R-Loop Structures , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nucleotides/metabolism , Oxidation-Reduction , Carbon Dioxide/metabolism , Photosynthesis
7.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article En | MEDLINE | ID: mdl-38566310

RNA modifications, including N-7-methylguanosine (m7G), are pivotal in governing RNA stability and gene expression regulation. The accurate detection of internal m7G modifications is of paramount significance, given recent associations between altered m7G deposition and elevated expression of the methyltransferase METTL1 in various human cancers. The development of robust m7G detection techniques has posed a significant challenge in the field of epitranscriptomics. In this study, we introduce two methodologies for the global and accurate identification of m7G modifications in human RNA. We introduce borohydride reduction sequencing (Bo-Seq), which provides base resolution mapping of m7G modifications. Bo-Seq achieves exceptional performance through the optimization of RNA depurination and scission, involving the strategic use of high concentrations of NaBH4, neutral pH and the addition of 7-methylguanosine monophosphate (m7GMP) during the reducing reaction. Notably, compared to NaBH4-based methods, Bo-Seq enhances the m7G detection performance, and simplifies the detection process, eliminating the necessity for intricate chemical steps and reducing the protocol duration. In addition, we present an antibody-based approach, which enables the assessment of m7G relative levels across RNA molecules and biological samples, however it should be used with caution due to limitations associated with variations in antibody quality between batches. In summary, our novel approaches address the pressing need for reliable and accessible methods to detect RNA m7G methylation in human cells. These advancements hold the potential to catalyse future investigations in the critical field of epitranscriptomics, shedding light on the complex regulatory roles of m7G in gene expression and its implications in cancer biology.


Guanosine/analogs & derivatives , Nucleotides , RNA , Humans , RNA/chemistry , Nucleotides/metabolism , Methylation , Methyltransferases/genetics , RNA Processing, Post-Transcriptional
8.
Methods Mol Biol ; 2797: 177-193, 2024.
Article En | MEDLINE | ID: mdl-38570460

RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity. In this chapter, we describe the application of native mass spectrometry (MS) to monitor the assembly of the catalytic domain of SOS (SOScat) with RAS and cancer-associated mutants. Results from this approach have led to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRAS. It was also found that KRASG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its SOScat activity. KRASG13D-GTP can allosterically increase the nucleotide exchange rate of KRAS at the active site by more than twofold compared to the wild-type protein. Furthermore, small-molecule RAS•SOS disruptors fail to dissociate KRASG13D•SOScat complexes, underscoring the need for more potent disruptors targeting oncogenic RAS mutants. Taken together, native MS will be instrumental in better understanding the interaction between oncogenic RAS mutants and SOS, which is of crucial importance for development of improved therapeutics.


Nucleotides , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Catalytic Domain , Nucleotides/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism
9.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38598324

Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.


Aging , Mice, Inbred C57BL , Nucleotides , Animals , Mice , Male , Aging/metabolism , Nucleotides/metabolism , Nucleotides/analysis , Kidney/metabolism , Kidney/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Tandem Mass Spectrometry , Liver/metabolism , Liver/chemistry , Brain/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621969

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Glutamic Acid , Spleen , Mice , Male , Animals , Semen , Glutamine , Aspartic Acid , Metabolomics/methods , Liver/metabolism , Alanine/metabolism , Amino Sugars/metabolism , Water/metabolism , Nucleotides/metabolism , Purines/metabolism , Sugars , Chromatography, High Pressure Liquid , Biomarkers/metabolism
11.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195026, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641240

Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles. Our findings reveal that the dynamics of a non-canonical base generate an entropic signal that guides the one-dimensional search of a repair protein, thereby facilitating the recognition of the lesion site. The width of the funnel perfectly aligns with the one-dimensional diffusion length of DNA-binding proteins. The generic mechanism provides a physical basis for rapid recognition and specificity of DNA damage sensing and recognition.


DNA Damage , DNA Repair , DNA , Molecular Dynamics Simulation , DNA/metabolism , DNA-Binding Proteins/metabolism , Nucleotides/metabolism , Protein Binding , Humans
12.
J Biol Chem ; 300(4): 107140, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447795

RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.


RNA Processing, Post-Transcriptional , RNA , Support Vector Machine , Computational Biology/methods , RNA/chemistry , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA/methods , Nucleotides/chemistry , Nucleotides/metabolism
13.
J Mol Graph Model ; 129: 108748, 2024 06.
Article En | MEDLINE | ID: mdl-38452417

The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.


Molecular Dynamics Simulation , Monomeric GTP-Binding Proteins , Humans , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Nucleotides/metabolism , DNA , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Communication , RNA
14.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480545

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , RNA, Small Interfering/genetics , Nucleotides/metabolism , Adenine/metabolism , DNA Methylation/genetics , RNA, Plant/genetics
15.
Hypertension ; 81(5): 1167-1177, 2024 May.
Article En | MEDLINE | ID: mdl-38497230

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Blood Pressure , Hypertension , Regulatory-Associated Protein of mTOR , Sodium Chloride, Dietary , Female , Humans , Male , Carrier Proteins/genetics , Hypertension/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Nucleotides/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Sirolimus , Sodium Chloride, Dietary/metabolism , TOR Serine-Threonine Kinases/metabolism , White People
16.
Biochemistry ; 63(7): 880-892, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38501608

Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.


Chromatin , Nucleosomes , ran GTP-Binding Protein , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , Guanosine Triphosphate/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleotides/metabolism , ran GTP-Binding Protein/metabolism , Humans , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism
17.
Microbiol Spectr ; 12(4): e0398923, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38451091

Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE: The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.


Bacteriophages , Lactococcus , Protein Biosynthesis , Ribosome Profiling , Down-Regulation , Bacteriophages/genetics , Bacteriophages/metabolism , RNA, Messenger/metabolism , Nucleotides/metabolism , Uridine Monophosphate/metabolism
18.
Biomed Pharmacother ; 173: 116332, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430630

Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.


Breast Neoplasms , Flavonoids , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Reactive Oxygen Species , Benzoquinones/pharmacology , Benzoquinones/therapeutic use , Apoptosis , Nucleotides/metabolism , DNA , Phosphoric Monoester Hydrolases/genetics , Cell Line, Tumor
19.
Biophys J ; 123(8): 979-991, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38459695

COG0523 proteins, also known as nucleotide-dependent metallochaperones, are a poorly understood class of small P-loop G3E GTPases. Multiple family members play critical roles in bacterial pathogen survival during an infection as part of the adaptive response to host-mediated "nutritional immunity." Our understanding of the structure, dynamics, and molecular-level function of COG0523 proteins, apart from the eukaryotic homolog, Zng1, remains in its infancy. Here, we use X-ray absorption spectroscopy to establish that Acinetobacter baumannii (Ab) ZigA coordinates ZnII using all three cysteines derived from the invariant CXCC motif to form an S3(N/O) coordination complex, a feature inconsistent with the ZnII-bound crystal structure of a distantly related COG0523 protein of unknown function from Escherichia coli, EcYjiA. The binding of ZnII and guanine nucleotides is thermodynamically linked in AbZigA, and this linkage is more favorable for the substrate GTP relative to the product GDP. Part of this coupling originates with nucleotide-induced stabilization of the G-domain tertiary structure as revealed by global thermodynamics measurements and hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS also reveals that the HDX behavior of the G2 (switch 1) loop is highly sensitive to nucleotide status and becomes more exchange labile in the GDP (product)-bound state. Significant long-range perturbation of local stability in both the G-domain and the C-terminal domain define a candidate binding pocket for a client protein that appears sensitive to nucleotide status (GDP versus GTP). We place these new insights into the structure, dynamics, and energetics of intermolecular metal transfer into the context of a model for AbZigA metallochaperone function.


Acinetobacter baumannii , Zinc , Humans , Zinc/metabolism , Acinetobacter baumannii/metabolism , Nucleotides/metabolism , Bacteria/metabolism , Guanosine Triphosphate/metabolism , Protein Binding , Guanosine Diphosphate/metabolism
20.
Vaccine ; 42(11): 2909-2918, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38538405

An issue with many current vaccines is the dependency on broadly inflammatory adjuvants, such as aluminum hydroxide or aluminum salts that affect many immune- and non-immune cells. These adjuvants are not necessarily activating all antigen-presenting cells (APCs) that take up the antigen and most likely they also activate APCs with no antigen uptake, as well as many non-immune cells. Conjugation of antigen and adjuvant would enable the use of smaller amounts of adjuvant and avoid unnecessary tissue damage and activation of bystander cells. It would ensure that all APCs that take up the antigen would also become activated and avoid that immature and non-activated APCs present the antigen to T cells without a co-stimulatory signal, leading to tolerogenesis. We have developed a novel vaccine that co-deliver antigen and a nucleotide adjuvant to the same APC and lead to a strong activation response in dendritic cells and macrophages. The vaccine is constructed as a fusion-protein with an antigen fused to the DNA/RNA-binding domain from the Hc2 protein from Chlamydia trachomatis. We have found that the fusion protein is able to package polyinosinic:polycytidylic acid (poly(I:C)) or dsDNA into small particles. These particles were taken up by macrophages and dendritic cells and led to strong activation and maturation of these cells. Immunization of mice with the fusion protein packaged poly(I:C) led to a stronger antibody response compared to immunization with a combination of poly(I:C) and antigen without the Hc2 DNA/RNA-binding domain.


Antibody Formation , Vaccines , Animals , Mice , Nucleotides/metabolism , Dendritic Cells , Antigens , Poly I-C , Adjuvants, Immunologic , DNA
...