Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell Mol Biol Lett ; 27(1): 75, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064319

RESUMEN

BACKGROUND: Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. METHODS: In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. RESULTS: Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. CONCLUSION: Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development.


Asunto(s)
Neoplasias Asociadas a Colitis , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Animales , Carcinogénesis , Sulfato de Dextran/toxicidad , Inflamación , Ratones , Factores de Transcripción NFATC
2.
Nature ; 602(7895): 129-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082446

RESUMEN

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Embrión de Mamíferos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Miocardio/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
3.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33020223

RESUMEN

During their synthesis, the C-tailed membrane proteins expose the membrane-spanning segment late from the ribosome and consequently can insert into the membrane only posttranslationally. However, the C-tailed type 6 secretion system (T6SS) component SciP uses the bacterial signal recognition particle (SRP) system for membrane targeting, which operates cotranslationally. Analysis of possible sequence regions in the amino-terminal part of the protein revealed two candidates that were then tested for whether they function as SRP signal peptides. Both sequences were tested positive as synthetic peptides for binding to SRP. In addition, purified ribosomes with stalled nascent chains exposing either sequence were capable of binding to SRP and SRP-FtsY complexes with high affinity. Together, the data suggest that both peptides can serve as an SRP signal sequence promoting an early membrane targeting of SciP during its synthesis. Like observed for multispanning membrane proteins, the two cytoplasmic SRP signal sequences of SciP may also facilitate a retargeting event, making the targeting more efficient.IMPORTANCE C-tail proteins are anchored in the inner membrane with a transmembrane segment at the C terminus in an N-in/C-out topology. Due to this topology, membrane insertion occurs only posttranslationally. Nevertheless, the C-tail-anchored protein SciP is targeted cotranslationally by SRP. We report here that two amino-terminal hydrophobic stretches in SciP are individually recognized by SRP and target the nascent protein to FtsY. The presence of two signal sequences may enable a retargeting mechanism, as already observed for multispanning membrane proteins, to make the posttranslational insertion of SciP by YidC more efficient.


Asunto(s)
Factor 6 de Transcripción de Unión a Octámeros/química , Partícula de Reconocimiento de Señal/química , Secuencia de Aminoácidos , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Partícula de Reconocimiento de Señal/genética
4.
Nat Commun ; 10(1): 3477, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375664

RESUMEN

Oct4, along with Sox2 and Klf4 (SK), can induce pluripotency but structurally similar factors like Oct6 cannot. To decode why Oct4 has this unique ability, we compare Oct4-binding, accessibility patterns and transcriptional waves with Oct6 and an Oct4 mutant defective in the dimerization with Sox2 (Oct4defSox2). We find that initial silencing of the somatic program proceeds indistinguishably with or without Oct4. Oct6 mitigates the mesenchymal-to-epithelial transition and derails reprogramming. These effects are a consequence of differences in genome-wide binding, as the early binding profile of Oct4defSox2 resembles Oct4, whilst Oct6 does not bind pluripotency enhancers. Nevertheless, in the Oct6-SK condition many otherwise Oct4-bound locations become accessible but chromatin opening is compromised when Oct4defSox2 occupies these sites. We find that Sox2 predominantly facilitates chromatin opening, whilst Oct4 serves an accessory role. Formation of Oct4/Sox2 heterodimers is essential for pluripotency establishment; however, reliance on Oct4/Sox2 heterodimers declines during pluripotency maintenance.


Asunto(s)
Reprogramación Celular/genética , Cromatina/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Transición Epitelial-Mesenquimal/genética , Fibroblastos , Células Madre Pluripotentes Inducidas/fisiología , Factor 4 Similar a Kruppel , Ratones Transgénicos , Mutación , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Cultivo Primario de Células , Multimerización de Proteína/genética , Factores de Transcripción SOXB1/genética , Factores de Tiempo
5.
Stem Cell Reports ; 8(5): 1270-1286, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28434941

RESUMEN

Environmental stresses are increasingly acknowledged as core causes of abnormal neural induction leading to neural tube defects (NTDs). However, the mechanism responsible for environmental stress-triggered neural induction defects remains unknown. Here, we report that a spectrum of environmental stresses, including oxidative stress, starvation, and DNA damage, profoundly activate SIRT1, an NAD+-dependent lysine deacetylase. Both mouse embryos and in vitro differentiated embryonic stem cells (ESCs) demonstrated a negative correlation between the expression of SIRT1 and that of OCT6, a key neural fate inducer. Activated SIRT1 radically deacetylates OCT6, triggers an OCT6 ubiquitination/degradation cascade, and consequently increases the incidence of NTD-like phenotypes in mice or hinders neural induction in both human and mouse ESCs. Together, our results suggest that early exposure to environmental stresses results in the dysregulation of the SIRT1/OCT6 axis and increases the risk of NTDs.


Asunto(s)
Exposición a Riesgos Ambientales , Defectos del Tubo Neural/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Estrés Oxidativo , Sirtuina 1/metabolismo , Animales , Células Cultivadas , Daño del ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/genética , Factor 6 de Transcripción de Unión a Octámeros/genética , Proteolisis , Sirtuina 1/genética , Ubiquitinación
6.
Biosci Trends ; 11(1): 95-104, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28154340

RESUMEN

As is similar to glial cell line-derived neurotrophic factor (GDNF), the Yangjing Capsule (YC) extract could also lead to proliferation of spermatogonial stem cells (SSCs) by stimulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway; however, the regulatory effect of YC extract on the expression of POU3F1 still remains unknown. The objective of this study is to determine whether the transcription factor POU3F1 is up-regulated by YC extract through the PI3K/AKT signaling pathway to regulate SSCs survival and proliferation. Cultured GC-1 spermatogonial (spg) cells were treated with 0.01, 0.1, and 1 mg/mL YC extract for 48 h. Cell viability was analyzed using MTT assay, while POU3F1 expression was quantitatively detected using real time-polymerase chain reaction and Western blot analysis. POU3F1, GDNF family receptor alpha1 (GFRα1) short interfering ribonucleic acid (siRNA), and LY294002 (PI3K inhibitor) were applied as blockers to explore the underlying pathway. After 48 h treatment with YC extract, GC-1 spg cells proliferated and POU3F1 expression was significantly increased in a dose-dependent manner. POU3F1 siRNA partially blocked those effects of YC extract. Both GFRα1 siRNA and LY294002, as upstream blockers, reduced POU3F1 expression induced by YC extract. The conclusion is that YC extract promotes proliferation of GC-1 spg cells via up-regulation of POU3F1. The potential mechanism is that YC extract triggers the activation of the PI3K/AKT pathway and then up-regulates POU3F1 expression.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatogonias/citología , Espermatogonias/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Cápsulas , Línea Celular , Proliferación Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatogonias/efectos de los fármacos
7.
Brain Struct Funct ; 221(8): 4187-4202, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26687503

RESUMEN

Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Nervio Hipogloso/embriología , Nervio Hipogloso/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Transgénicos , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Lengua/embriología , Lengua/inervación
8.
J Comp Neurol ; 522(18): 4057-73, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25048219

RESUMEN

Among sodium channel isoforms, Nav 1.6 is selectively expressed at nodes of Ranvier in both the CNS and the PNS. However, non-Nav 1.6 isoforms such as Nav 1.2 are also present at the CNS nodes in early development but gradually diminish later. It has been proposed that myelination is part of a glia-neuron signaling mechanism that produces this change in nodal isoform expression. The present study used isoform-specific antibodies to demonstrate that, in the PNS, four other neuronal sodium channel isoforms were also clustered at nodes in early development but eventually disappeared during maturation. To study possible roles of myelination in such transitions, we investigated the nodal expression of selected isoforms in the sciatic nerve of the transgenic mouse Oct6(ΔSCE/ßgeo) , whose PNS myelination is delayed in the first postnatal week but eventually resumes. We found that delayed myelination retarded the formation of nodal channel clusters and altered the expression-elimination patterns of sodium channel isoforms, resulting in significantly reduced expression levels of non-Nav 1.6 isoforms in such delayed nodes. However, delayed myelination did not significantly affect the gene expression, protein synthesis, or axonal trafficking of any isoform studied. Rather, we found evidence for a developmentally programmed increase in neuronal Nav 1.6 expression with constant or decreasing neuronal expression of other isoforms that were unaffected by delayed myelination. Thus our results suggest that, in the developmental isoform switch of the PNS, myelination does not play a signaling role as that proposed for the CNS but rather serves only to form nodal clusters from existing isoform pools.


Asunto(s)
Nódulos de Ranvier/metabolismo , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Canales de Sodio/metabolismo , Animales , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Immunoblotting , Inmunohistoquímica , Vértebras Lumbares , Ratones Transgénicos , Análisis por Micromatrices , Mutación , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Cell Mol Neurobiol ; 34(7): 1023-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24962097

RESUMEN

SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish. Due to the potential of SYF2 in modulating microtubule dynamics in nervous system, we investigated the spatiotemporal expression of SYF2 in a rat sciatic nerve crush (SNC) model. We found that SNC resulted in a significant upregulation of SYF2 from 3 days to 1 week and subsequently returned to the normal level at 4 weeks. At its peak expression, SYF2 distributed predominantly in Schwann cells. In addition, upregulation of SYF2 was approximately in parallel with Oct-6, and numerous Schwann cells expressing SYF2 were Oct-6 positive. In vitro, we observed enhanced expression of SYF2 during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation. SYF2-specific siRNA-transfected Schwann cells did not show significant morphological change in the process of Schwann cell differentiation. Also, we found shorter and disorganized microtubule structure and a decreased migration in SYF2-specific siRNA-transfected Schwann cells. Together, these findings indicated that the upregulation of SYF2 was associated with Schwann cell differentiation and migration following sciatic nerve crush.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Compresión Nerviosa , Proteínas Nucleares/metabolismo , Células de Schwann/patología , Nervio Ciático/patología , Regulación hacia Arriba , Animales , Biomarcadores/metabolismo , Western Blotting , Antígeno CD11b/metabolismo , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , AMP Cíclico/farmacología , Inmunohistoquímica , Masculino , Modelos Biológicos , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
Elife ; 32014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24929964

RESUMEN

The neural fate commitment of pluripotent stem cells requires the repression of extrinsic inhibitory signals and the activation of intrinsic positive transcription factors. However, how these two events are integrated to ensure appropriate neural conversion remains unclear. In this study, we showed that Pou3f1 is essential for the neural differentiation of mouse embryonic stem cells (ESCs), specifically during the transition from epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs). Chimeric analysis showed that Pou3f1 knockdown leads to a markedly decreased incorporation of ESCs in the neuroectoderm. By contrast, Pou3f1-overexpressing ESC derivatives preferentially contribute to the neuroectoderm. Genome-wide ChIP-seq and RNA-seq analyses indicated that Pou3f1 is an upstream activator of neural lineage genes, and also is a repressor of BMP and Wnt signaling. Our results established that Pou3f1 promotes the neural fate commitment of pluripotent stem cells through a dual role, activating internal neural induction programs and antagonizing extrinsic neural inhibitory signals.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/metabolismo , Células-Madre Neurales/citología , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Inmunoprecipitación de Cromatina , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Placa Neural/citología , Análisis de Secuencia de ARN , Proteínas Wnt/metabolismo
11.
Development ; 141(4): 784-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496616

RESUMEN

Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.


Asunto(s)
Cadherinas/metabolismo , Células Madre Embrionarias/citología , Neuronas Motoras/citología , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Nervio Frénico/embriología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Diafragma/inervación , Citometría de Flujo , Proteínas de Homeodominio/metabolismo , Ratones , Neuronas Motoras/fisiología , Fosfoproteínas/metabolismo , Nervio Frénico/citología , Protocadherinas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Transducción de Señal/genética , Factores de Transcripción , Transcriptoma
12.
Dev Cell ; 26(2): 123-35, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23906064

RESUMEN

We recently demonstrated that the expression of the importin α subtype is switched from α2 to α1 during neural differentiation in mouse embryonic stem cells (ESCs) and that this switching has a major impact on cell differentiation. In this study, we report a cell-fate determination mechanism in which importin α2 negatively regulates the nuclear import of certain transcription factors to maintain ESC properties. The nuclear import of Oct6 and Brn2 was inhibited via the formation of a transport-incompetent complex of the cargo bound to a nuclear localization signal binding site in importin α2. Unless this dominant-negative effect was downregulated upon ESC differentiation, inappropriate cell death was induced. We propose that although certain transcription factors are necessary for differentiation in ESCs, these factors are retained in the cytoplasm by importin α2, thereby preventing transcription factor activity in the nucleus until the cells undergo differentiation.


Asunto(s)
Núcleo Celular/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/metabolismo , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Línea Celular , Ratones , Señales de Localización Nuclear/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Transducción de Señal , alfa Carioferinas , beta Carioferinas/metabolismo
13.
Muscle Nerve ; 48(3): 423-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824709

RESUMEN

INTRODUCTION: Severe lesions in the facial nerve may have extensive axonal loss and leave isolated stumps that impose technical difficulties for nerve grafting. METHODS: We evaluated bone marrow stem cells (BMSC) in a silicone conduit for rat facial nerve regeneration from isolated stumps. Group A utilized empty silicone tubes; in groups B-D, the tube was filled with acellular gel; and, in groups C and D, undifferentiated BMSC (uBMSC) or Schwann-like cells differentiated from BMSC (dBMSC) were added, respectively. Compound muscle action potentials (CMAPs) were measured, and histology was evaluated. RESULTS: Groups C and D had the highest CMAP amplitudes. Group C had shorter CMAP durations than groups A, B, and D. Distal axonal number and density were increased in group C compared with groups A and B. CONCLUSIONS: Regeneration of the facial nerve was improved by both uBMSC and dBMSC in rats, yet uBMSC was associated with superior functional results.


Asunto(s)
Muñones de Amputación/cirugía , Trasplante de Médula Ósea/métodos , Nervio Facial/citología , Células Madre Mesenquimatosas/fisiología , Músculo Esquelético/fisiopatología , Regeneración Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Axones/patología , Células Cultivadas , Electromiografía , Estudios de Seguimiento , Masculino , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptor de Factor de Crecimiento Nervioso/metabolismo , Proteínas S100/metabolismo , Estadísticas no Paramétricas , Transducción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
14.
Mol Microbiol ; 87(6): 1277-89, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23368090

RESUMEN

Cell cycle transitions are often triggered by the proteolysis of key regulatory proteins. In Caulobacter crescentus, the G1-S transition involves the degradation of an essential DNA-binding response regulator, CtrA, by the ClpXP protease. Here, we show that another critical cell cycle regulator, SciP, is also degraded during the G1-S transition, but by the Lon protease. SciP is a small protein that binds directly to CtrA and prevents it from activating target genes during G1. We demonstrate that SciP must be degraded during the G1-S transition so that cells can properly activate CtrA-dependent genes following DNA replication initiation and the reaccumulation of CtrA. These results indicate that like CtrA, SciP levels are tightly regulated during the Caulobacter cell cycle. In addition, we show that formation of a complex between CtrA and SciP at target promoters protects both proteins from their respective proteases. Degradation of either protein thus helps trigger the destruction of the other, facilitating a cooperative disassembly of the complex. Collectively, our results indicate that ClpXP and Lon each degrade an important cell cycle regulator, helping to trigger the onset of S phase and prepare cells for the subsequent programmes of gene expression critical to polar morphogenesis and cell division.


Asunto(s)
Caulobacter crescentus/fisiología , Ciclo Celular , Regulación Bacteriana de la Expresión Génica , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Proteasa La/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Proteolisis
15.
Arch Dermatol Res ; 305(5): 371-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23341029

RESUMEN

Loricrin is a major component of the epidermal cornified cell envelope, and is expressed only in terminally differentiated keratinocytes. This cell differentiation-specific expression pattern suggests specific regulatory mechanisms for activation and suppression of loricrin gene transcription in differentiated keratinocytes. Here, we identified a regulatory element in the proximal promoter region of the loricrin gene involved in suppression of its expression in keratinocytes. A database search indicated that this sequence contained a POU transcription factor binding motif. Electrophoretic mobility shift assay revealed that Oct-1, Oct-6, and Oct-11 actually bind to the motif. Constructs with point mutations in the POU-binding motif showed increased reporter activity, indicating that the POU factors negatively regulate loricrin gene transcription. Cotransfection experiments suggested that Oct-6 and Oct-11 suppress loricrin gene transcription in a cooperative manner with AP-1 and Sp1. Furthermore, in vitro experiments indicated that the Oct-6 and Oct-11 can physically associate with both AP-1 factors and Sp1/Sp3. These findings indicate that Oct-6 and Oct-11 contribute to the regulation of loricrin gene transcription via interaction with AP-1 factors and Sp1/Sp3.


Asunto(s)
Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción de Octámeros/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Bases de Datos Genéticas , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Genes Reporteros , Proteínas de la Membrana/genética , Ratones , Mutación Puntual , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Análisis de Secuencia de ADN , Transcripción Genética , Transfección
16.
Cereb Cortex ; 23(11): 2632-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22892427

RESUMEN

The upper layers (II-IV) are the most prominent distinguishing feature of mammalian neocortex compared with avian or reptilian dorsal cortex, and are vastly expanded in primates. Although the time-dependent embryonic generation of upper-layer cells is genetically instructed within their parental progenitors, mechanisms governing cell-intrinsic fate transitions remain obscure. POU-homeodomain transcription factors Pou3f3 and Pou3f2 (Brn1 and Brn2) are known to label postmitotic upper-layer cells, and are redundantly required for their production. We find that the onset of Pou3f3/2 expression actually occurs in ventricular zone (VZ) progenitors, and that Pou3f3/2 subsequently label neural progeny switching from deep-layer Ctip2(+) identity to Satb2(+) upper-layer fate as they migrate to proper superficial positions. By using an Engrailed dominant-negative repressor, we show that sustained neurogenesis after the deep- to upper-layer transition requires the proneual action of Pou3fs in VZ progenitors. Conversely, single-gene overexpression of any Pou3f in early neural progenitors is sufficient to specify the precocious birth of Satb2(+) daughter neurons that extend axons to the contralateral hemisphere, as well as exhibit robust pia-directed migration that is characteristic of upper-layer cells. Finally, we demonstrate that Pou3fs influence multiple stages of neurogenesis by suppressing Notch effector Hes5, and promoting the expression of proneural transcription factors Tbr2 and Tbr1.


Asunto(s)
Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neurogénesis , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/citología , Macaca mulatta , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
17.
Nat Neurosci ; 16(1): 48-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222914

RESUMEN

After peripheral nerve injury, axons regenerate and become remyelinated by resident Schwann cells. However, myelin repair never results in the original myelin thickness, suggesting insufficient stimulation by neuronal growth factors. Upon testing this hypothesis, we found that axonal neuregulin-1 (NRG1) type III and, unexpectedly, also NRG1 type I restored normal myelination when overexpressed in transgenic mice. This led to the observation that Wallerian degeneration induced de novo NRG1 type I expression in Schwann cells themselves. Mutant mice lacking a functional Nrg1 gene in Schwann cells are fully myelinated but exhibit impaired remyelination in adult life. We suggest a model in which loss of axonal contact triggers denervated Schwann cells to transiently express NRG1 as an autocrine/paracrine signal that promotes Schwann cell differentiation and remyelination.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Neurregulina-1/metabolismo , Recuperación de la Función/genética , Células de Schwann/metabolismo , Neuropatía Ciática/patología , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/patología , Axones/ultraestructura , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Evocados Motores/efectos de los fármacos , Potenciales Evocados Motores/fisiología , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Proteínas Hedgehog/genética , Antígeno Ki-67/metabolismo , Locomoción/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neurregulina-1/genética , Neuronas/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , ARN Mensajero/metabolismo , Ratas , Recuperación de la Función/efectos de los fármacos , Proteínas S100/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/ultraestructura , Nervio Ciático/citología , Neuropatía Ciática/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estadísticas no Paramétricas , Factores de Tiempo
18.
Brain ; 135(Pt 12): 3551-66, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23250879

RESUMEN

Charcot-Marie-Tooth disease type 1B is caused by mutations in myelin protein zero. R98C mice, an authentic model of early onset Charcot-Marie-Tooth disease type 1B, develop neuropathy in part because the misfolded mutant myelin protein zero is retained in the endoplasmic reticulum where it activates the unfolded protein response. Because oral curcumin, a component of the spice turmeric, has been shown to relieve endoplasmic reticulum stress and decrease the activation of the unfolded protein response, we treated R98C mutant mice with daily gastric lavage of curcumin or curcumin derivatives starting at 4 days of age and analysed them for clinical disability, electrophysiological parameters and peripheral nerve morphology. Heterozygous R98C mice treated with curcumin dissolved in sesame oil or phosphatidylcholine curcumin performed as well as wild-type littermates on a rotarod test and had increased numbers of large-diameter axons in their sciatic nerves. Treatment with the latter two compounds also increased compound muscle action potential amplitudes and the innervation of neuromuscular junctions in both heterozygous and homozygous R98C animals, but it did not improve nerve conduction velocity, myelin thickness, G-ratios or myelin period. The expression of c-Jun and suppressed cAMP-inducible POU (SCIP)-transcription factors that inhibit myelination when overexpressed-was also decreased by treatment. Consistent with its role in reducing endoplasmic reticulum stress, treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin was associated with decreased X-box binding protein (XBP1) splicing. Taken together, these data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response and by promoting Schwann cell differentiation.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Enfermedad de Charcot-Marie-Tooth , Curcumina/uso terapéutico , Proteína P0 de la Mielina/genética , Células de Schwann/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Arginina/genética , Células COS/efectos de los fármacos , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Chlorocebus aethiops , Cisteína/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Mutación/genética , Proteína P0 de la Mielina/metabolismo , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Pliegue de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción del Factor Regulador X , Prueba de Desempeño de Rotación con Aceleración Constante , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Proteína 1 de Unión a la X-Box
19.
J Comp Neurol ; 520(18): 4184-203, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22592645

RESUMEN

Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 µm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.


Asunto(s)
Axones/fisiología , Regulación de la Expresión Génica/fisiología , Proteína Básica de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Axones/ultraestructura , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Larva , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/genética , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Mol Cell Biol ; 32(13): 2618-27, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22566684

RESUMEN

Otx2 plays essential roles in rostral brain development, and its counteraction with Gbx2 has been suggested to determine the midbrain-hindbrain boundary (MHB) in vertebrates. We previously identified the FM enhancer that is conserved among vertebrates and drives Otx2 transcription in forebrain/midbrain from the early somite stage. In this study, we found that the POU homeodomain of class III POU factors (Brn1, Brn2, Brn4, and Oct6) associates with noncanonical target sequence TAATTA in the FM enhancer. MicroRNA-mediated knockdown of Brn2 and Oct6 diminished the FM enhancer activity in anterior neural progenitor cells (NPCs) differentiated from P19 cells. The class III POU factors associate with the FM enhancer in forebrain and midbrain but not in hindbrain. We also demonstrated that the Gbx2 homeodomain recognizes the same target TAATTA in the FM enhancer, and Gbx2 associates with the FM enhancer in hindbrain. Gbx2 misexpression in the anterior NPCs repressed the FM enhancer activity and inhibited Brn2 association with the enhancer, whereas Gbx2 knockdown caused ectopic Brn2 association in the posterior NPCs. These results suggest that class III POU factors and Gbx2 share the same target site, TAATTA, in the FM enhancer and that their region-specific binding restricts Otx2 expression at the MHB.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Mesencéfalo/metabolismo , Factores de Transcripción Otx/genética , Factores del Dominio POU/metabolismo , Prosencéfalo/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Unión Competitiva , Línea Celular , Secuencia Conservada , Cartilla de ADN/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Glicoproteínas de Membrana/genética , Mesencéfalo/embriología , Ratones , Ratones Transgénicos , Modelos Neurológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/antagonistas & inhibidores , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/antagonistas & inhibidores , Factores del Dominio POU/clasificación , Factores del Dominio POU/genética , Prosencéfalo/embriología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...