Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.321
1.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747273

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Gas Chromatography-Mass Spectrometry , Oils, Volatile , Osteogenesis , Plant Extracts , Rhizome , Osteogenesis/drug effects , Rhizome/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Survival/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Mice , Palmitic Acid/pharmacology , Acyclic Monoterpenes/pharmacology
2.
J Oleo Sci ; 73(5): 761-772, 2024.
Article En | MEDLINE | ID: mdl-38692898

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
3.
J Oleo Sci ; 73(5): 773-786, 2024.
Article En | MEDLINE | ID: mdl-38692899

To overcome the defects of Citrus aurantium L. var. amara Engl. essential oil (CAEO), such as high volatility and poor stability, supercritical fluid-extracted CAEO nanoemulsion (SFE-CAEO-NE) was prepared by the microemulsification method. Emulsifiers comprising Tween 80, polyoxyethylenated castor oil (EL-40), and 1,2-hexanediol, and an oil phase containing SFE-CAEO were used for microemulsification. We examined the physicochemical properties of SFE-CAEO-NE and steam distillation-extracted CAEO nanoemulsion (SDE-CAEO-NE), which were prepared using different concentrations of the emulsifiers. The mean particle size and zeta potential were 21.52 nm and -9.82 mV, respectively, for SFE-CAEO-NE, and 30.58 nm and -6.28 mV, respectively, for SDE-CAEO-NE, at an emulsifier concentration of 15% (w/w). SFE-CAEO-NE displayed better physicochemical properties compared with SDE-CAEO-NE. Moreover, its physicochemical properties were generally stable at different temperatures (-20-60℃), pH (3-8), and ionic strengths (0-400 mM). No obvious variations in particle size, zeta potential, and Ke were observed after storing this nanoemulsion for 30 days at 4℃, 25℃, and 40℃, suggesting that it had good stability. The sleep-promoting effect of SFE-CAEO-NE was evaluated using a mouse model of insomnia. The results of behavioral tests indicated that SFE-CAEO-NE ameliorated insomnia-like behavior. Moreover, SFE-CAEO- NE administration increased the serum concentrations of neurotransmitters such as 5-hydroxytryptamine and γ-aminobutyric acid, and decreased that of noradrenaline in mice. It also exerted a reparative effect on the function of damaged neurons. Overall, SFE-CAEO-NE displayed a good sleep-promoting effect.


Citrus , Emulsions , Oils, Volatile , Sleep , Animals , Citrus/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mice , Sleep/drug effects , Male , Particle Size , Nanoparticles , Emulsifying Agents/isolation & purification
4.
J Oleo Sci ; 73(5): 787-799, 2024.
Article En | MEDLINE | ID: mdl-38692900

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
5.
Pak J Pharm Sci ; 37(1): 147-154, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741411

Zeravschania khorasanica, a species endemic to the eastern part of Iran, possesses distinct characteristics that distinguish it from its two closely related species. This research employed five different extraction techniques to identify the active components, total phenolic content and in vitro antioxidant activity of the extract. Furthermore, hydro-distillation was utilized for GC/MS analysis to determine the composition of the essential oil. The total phenolic content was estimated using the Folin-Ciocalteu assay and the antioxidant capacity was evaluated using the DPPH radical scavenging test. The findings revealed that ethanolic Soxhlet extraction yielded the highest efficiency in extracting total phenolic content (88.19 ±1.99 gallic acid mg/100g). In contrast, water maceration extraction demonstrated the highest antioxidant activity (68.1 ±5.4%). Interestingly, the study uncovered that there is no significant positive correlation between the phenolic content and the antioxidant activity of the plant. Additionally, HPLC analysis identified three phenolic constituents in the extract. The Soxhlet extraction method yielded the highest levels of chlorogenic acid (5.8 ppm), caffeic acid (4.1 ppm) and salicylic acid (10.3 ppm). As per the GC/MS analysis, a total of eleven compounds were identified. The predominant compounds were elemicin at 58.19% and trans--bergamotene at 25.78%.


Antioxidants , Apiaceae , Gas Chromatography-Mass Spectrometry , Phenols , Plant Extracts , Solvents , Antioxidants/isolation & purification , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Iran , Solvents/chemistry , Apiaceae/chemistry , Chromatography, High Pressure Liquid , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Biphenyl Compounds/chemistry , Picrates/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/analysis
6.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 401-409, mayo 2024. ilus, tab, graf
Article En | LILACS | ID: biblio-1538160

Bovine mastitis is a disease wi th far - reaching consequences for the dairy industry. Staphylococcus aureus is a pathogen that is especially resistant to antibiotics. The objective of this study was to evaluate the antimicrobial activity of the essential oils Lippia citriodora (Lam.), Thy mus vulgaris (L), and a mixture of the essential oils Lippia citriodora and Thymus vulgaris (50/50 v/v), against isolates of oxacillin - resistant Staphylococcus aureus (n=15) of positive cases of bovine mastitis. For the statistical analysis, the IBM SPSS s tatistical package was used. The mixture of essential oils ( Lippia citriodora and Thymus vulgaris (50/50 v/v)) obtained the most significant antimicrobial activity in relation to pure essential oils. It is therefore concluded that the mixture of these oils boosts their antimicrobial activity ( p <0.05). The minimum inhibitory and bactericidal concentration of this mixture for the total isolations was 12 µL/L and 25 µL/mL, respectively.


La mastitis bovina es una enfermedad de gran impacto para la industria lechera. El Staphylococcus aureus es uno de los principales patógenos, especialmente aquellos resistentes a los antibióticos. El objetivo de este estudio fue evaluar la actividad antimicrobiana de los aceites esenciales de Lippia citriodora (Lam.), Thymus vulgaris (L), y una mezcla de aceites esenciales de Lippia citriodora y Thymus vulgaris (50/50 v/v), frente a aislamientos clínicos de Staph ylococcus aureus oxacilino - resistentes (n=15) de mastitis bovina. Se utilizó p rograma estadístico IBM SPSS y se concluyó la diferencia significativa a un p <0.05. La mezcla de aceites esenciales ( Lippia citriodora y Thymus vulgaris (50/50 v/v)), obtuvo la m ayor actividad antimicrobiana en relación a los aceites esenciales puros, se concluye que la mezcla de estos aceites potencia su actividad antimicrobiana ( p <0.019). La concentración mínima inhibitoria y bactericida de esta mezcla fue del 12 µL/mL y 25 µL/m L, respectivamente, y puede ser una alternativa terapéutica.


Animals , Female , Cattle , Oils, Volatile/isolation & purification , Mastitis, Bovine/microbiology , Mastitis, Bovine/therapy , Staphylococcus aureus/isolation & purification , Drug Resistance, Microbial , Colombia
7.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Article En | MEDLINE | ID: mdl-38602839

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Allyl Compounds , Antifungal Agents , Garlic , Microbial Sensitivity Tests , Oils, Volatile , Sulfides , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/chemical synthesis , Sulfides/pharmacology , Sulfides/chemistry , Garlic/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Allyl Compounds/isolation & purification , Allyl Compounds/chemical synthesis , Distillation , Drug Design , Botrytis/drug effects , Structure-Activity Relationship , Ascomycota/drug effects , Molecular Structure
8.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675575

BACKGROUND: Myrtle (Myrtus communis L.) is a coastal Mediterranean aromatic medicinal plant rich in essential oil components, flavonoids, and phenolic acids. Studies highlight the potential health benefits of myrtle bioactive compounds with antioxidant and antiproliferative properties. Since limited research exists on myrtle fruit's lipid fraction, the aim of this study was to apply supercritical CO2 extraction to obtain bioactive compounds from myrtle berries focusing on the fatty acids, sterols, and essential oils. METHODS: The optimization of the supercritical CO2 extraction of myrtle fruit using CO2 as solvent was carried out using the response surface methodology with Box-Behnken experimental design. The following conditions were tested: temperature (40, 50, and 60 °C), pressure (200, 300, and 400 bar), and flow rate (20, 30, and 40 g min-1) on the yield of lipid extract as well as on the yield of fatty acids, phytosterols, and volatiles present in the extract and constituting its bioactive potential. RESULTS: In the extracts examined, 36 fatty acids, 7 phytosterols, and 13 volatiles were identified. The average yield of the extract was 5.20%, the most abundant identified fatty acid was essential cis-linolenic acid (76.83%), almost 90% of the total phytosterols were ß-sitosterol (12,465 mg kg-1), while myrtenyl acetate (4297 mg kg-1) was the most represented volatile compound. The optimal process conditions obtained allow the formulation of extracts with specific compositions.


Carbon Dioxide , Fatty Acids , Fruit , Myrtus , Phytosterols , Phytosterols/isolation & purification , Phytosterols/chemistry , Phytosterols/analysis , Myrtus/chemistry , Carbon Dioxide/chemistry , Fatty Acids/chemistry , Fatty Acids/analysis , Fatty Acids/isolation & purification , Fruit/chemistry , Plant Extracts/chemistry , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Chromatography, Supercritical Fluid/methods , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis
9.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38641078

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Klebsiella pneumoniae , Oils, Volatile , Plant Leaves , Plectranthus , Proteomics , Klebsiella pneumoniae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Plectranthus/chemistry , Humans , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Zebrafish , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
10.
Chem Biodivers ; 21(5): e202400185, 2024 May.
Article En | MEDLINE | ID: mdl-38513004

The resin essential oil (REO) of the Tunisian Araucaria heterophylla trunk bark was investigated for its chemical composition. Then, it was evaluated for its insecticidal and allelopathic activities. The REO was obtained by hydrodistillation for 9 h (yield of 4.2 % w/w). Moreover, fractional hydrodistillation was carried out at 3-hour intervals, resulting in 3 fractions (R1-R3), to facilitate chemical identification and localization of the aforementioned biological activities. GC/MS analysis of the obtained samples allowed the identification of 25 compounds, representing between 91.2 and 96.3 % of their total constituents, which consisted predominantly of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and diterpene hydrocarbons. α-Copaene (10.8 %), γ-muurolene (5.8 %), α-copaen-11-ol (7.8 %), spathulenol (10.5 %), 15-copaenol (8.2 %), ylangenal (10.3 %), dehydrosaussurea lactone (7.7 %), and sandaracopimaradiene (11.4 %) were identified as major compounds. The second part aimed to assess the impact of the A. heterophylla EO and its three fractions for their insecticidal and repellent activity against Tribolium castaneum (Herbst), a stored grain pest, of which a strong repellent activity was noted. In addition, the studied samples showed high phytotoxic effects against Lactuca sativa. The third fraction (R3) performed a total inhibitory potential on seed germination and seedling growth of the target plant. Furthermore, alongside this discovery, an estimation was conducted through molecular docking analysis. Wherein the main compounds of the studied samples were docked into the active pocket of protoporphyrinogen IX oxidase (PDB: 1SEZ), a key enzyme in chlorophyll biosynthesis. Thus, it is recommended to use the REO of A. heterophylla as a natural herbicide.


Araucaria , Insecticides , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tunisia , Animals , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Araucaria/drug effects , Araucaria/chemistry , Araucaria/metabolism , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Resins, Plant/chemistry , Molecular Docking Simulation , Gas Chromatography-Mass Spectrometry
11.
Chem Biodivers ; 21(5): e202302112, 2024 May.
Article En | MEDLINE | ID: mdl-38531073

The essential oils of Senecio plants have been used to treat a wide range of ailments. The current study aimed to extract the essential oil of Senecio glaucus obtained from Egypt's Nile delta and determine its chemical profile using GC-MS and NMR analysis. Then, the antimicrobial activity of the oil has been investigated against different fungal and bacterial strains. In addition, its activity as radical scavenger has been evaluated using DPPH, ABTS, and metal chelating techniques. The results revealed the identification of 50 compounds representing 98.80 % of the oil total mass. Sesquiterpenes, including dehydrofukinone (27.15 %) and 4,5-di-epi-aristolochene (10.27 %), as well as monoterpenes, including p-cymene (4.77 %), represented the most predominant constituents. The dehydrofukinone has been isolated and structurally confirmed using 1D and 2D NMR techniques. The oil has showed remarkable antifungal activity against Candida glabrata and C. albicans where the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were 3.13 µg/mL and 1.50 µg/mL and 12.50 µg/mL and 6.30 µg/mL, respectively that could be attributed to the sesquiterpene ketones present in the aerial tissues of the plant. Also, this oil inhibited the growth of the tested bacteria with MIC ranging from 12.50-100.00 µg/mL. In comparison to ascorbic acid and Trolox, the EO had remarkable scavenging activity of DPPH, ABTS and metal chelating with IC50 values of 313.17±13.4, 493.83±20.1, and 409.13±16.7 µg/mL. The docking studies of the identified compounds of the oil to different microbial targets, including Gyrase B and α-sterol demethylase, showed that the phytol possessed the best binding affinities toward the active sites of both enzymes with ΔG=-7.42 and -7.78 kcal/mol, respectively. In addition, the phytol revealed the highest binding affinity to tyrosine kinase Hck with ΔG=-7.44 kcal/mol.


Antioxidants , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Senecio , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Senecio/chemistry , Bacteria/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Fungi/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Picrates/antagonists & inhibitors , Odorants/analysis , Biphenyl Compounds/antagonists & inhibitors
12.
Chem Biodivers ; 21(5): e202302096, 2024 May.
Article En | MEDLINE | ID: mdl-38412297

Pistacia khinjuk is a species of flowering plants belonging to family Anacardiaceae, with promising pharmacological activities like antioxidants, anti-inflammatory, antiviral, and antimicrobial. This study aimed to investigate the GC-MS chemical composition of essential oil isolated from Pistacia khinjuk leaves and its inhibitory properties against aging-relevant enzymes such a collagenase and elastase. The isolated oil showed predominance of ß-cadinene (15.34 %), γ-amorphene (8.50 %), α-cadinol (8.14 %), τ-cadinol (7.57 %), (E)-ß-caryophyllene (5.77 %), α-pinene (4.70 %), phytol (4.57 %), α-muurolene (3.30 %), (+)-epi-bicyclosesquiphellandrene (3.21 %), and cubenene (3.16 %). Further, it showed remarkable inhibitory activities against collagenase and elastase with IC50 values of 15.61±0.69 and 41.12±2.09 µg/mL, respectively compared to epigallocatechin gallate (IC50=29.52±1.3 µg/mL and 26.86±1.37 µg/mL). as a conclusion, the leaf oil is recommended for topical cosmetic preparations to retard skin aging symptoms such as wrinkles. However, the bioavailability assessment and toxicological profile should be considered in the future studies.


Collagenases , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Pancreatic Elastase , Pistacia , Plant Leaves , Skin Aging , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Pistacia/chemistry , Skin Aging/drug effects , Collagenases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans
13.
Chem Biodivers ; 21(5): e202302115, 2024 May.
Article En | MEDLINE | ID: mdl-38415904

There is a burgeoning focus on utilizing the antifungal and antioxidant properties of essential oils derived from various plants as a modern and natural approach to combat the growth of fungi that contaminate food. In this study, we used essential oils extracted from Thymus daenensis Celak. subsp. daenensis to address three mycotoxin-producing species of Aspergillus, specifically A. flavus, A. parasiticus, and A. niger, all of which are recognized contaminants of food and agricultural products. Concurrently, the antioxidant properties of the essential oils were evaluated, revealing their noteworthy role in the antifungal activity. Essential oils were derived from T. daenensis subsp. daenensis was observed to have a significant inhibitory effect on all three species of Aspergillus, as evidenced by the minimum inhibitory concentration (MIC) ranging from 575 to 707 ppm and the half-maximal inhibitory concentration (IC50) ranging from 237 to 280 ppm. These results confirm the strong antifungal activity of the essential oils. Furthermore, the essential oil exhibited free radical scavenging activity, resulting in an EC50 value of 37.1 µg/ml. In summary, T. daenensis subsp. daenensis essential oil demonstrated a competitive advantage over other similar plants and synthetic antibiotics. This indicates the promising potential of this essential oil as a natural antifungal agent to control Aspergillus growth and mycotoxin contamination. It offers an alternative or complementary approach to conventional antifungal agents and could be a valuable addition to the arsenal of natural remedies to address fungal contamination in food and agricultural products.


Antifungal Agents , Aspergillus , Free Radical Scavengers , Microbial Sensitivity Tests , Oils, Volatile , Thymol , Thymus Plant , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Aspergillus/drug effects , Aspergillus/chemistry , Thymus Plant/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Thymol/pharmacology , Thymol/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/isolation & purification
14.
Arch Pharm (Weinheim) ; 357(5): e2300742, 2024 May.
Article En | MEDLINE | ID: mdl-38290054

Aging and agro-waste are major challenges. Natural ingredients are preferred in skincare. This study intended to isolate the essential oils (EO) from the leftover peels obtained from three commonly edible Citrus species fruit peels, namely Citrus paradisi (grapefruit), Citrus sinensis (sweet orange), and Citrus deliciosa (mandarin). Gas chromatography/mass spectrometry analysis identified volatile constituents in EO and headspace aroma. Multivariate analysis distinguished between the three species. The antiaging effects of Citrus EO were assessed in vitro and in silico, studying volatile interactions with target enzymes. C. sinensis peels had the highest oil yield, rich in monoterpenes. C. paradisi and C. deliciosa contained sesquiterpenes. Limonene dominated the hydrodistilled EO: 94.50% in C. paradisi, 96.80% in C. sinensis, and 80.66% in C. deliciosa. Unsupervised multivariate analysis of Citrus species revealed that  d-limonene, γ-terpinene, and ß-pinene are the key phytochemical markers contributing to their diverse chemical composition. C. paradisi exhibited the highest enzyme inhibitory activity, with IC50 values of 12.82, 27.58, and 18.16 µg/mL for tyrosinase, elastase, and collagenase, respectively. In silico studies showed that the volatiles can inhibit the tested antiaging enzymes. According to these findings, the investigated agro-waste might slow aging in skin care.


Citrus , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Citrus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Multivariate Analysis , Fruit/chemistry , Humans
15.
Sci Total Environ ; 863: 160920, 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36529390

High alkaline and low organic carbon hinder micronutrients, such as copper (Cu), bioavailability in (semi-) arid soils, affecting plant nutrient quality and productivity. This study aimed at investigating the potential beneficial effects of foliar Cu oxide nanoparticles (CuONPs) and conventional chelated-Cu applications (0-400 mg Cu/L) on the biomass, physiological biomarkers of plant productivity and oxidative stress, Cu bioaugmentation, and essential oils and secondary metabolites in dragonhead (Dracocephalum moldavica [L.]) grown in Cu-limited alkaline soil in semi-arid condition. Employing a randomized complete block design with three replicates, two different sources of Cu (CuONPs and chelated-Cu), and a wide range of Cu concentrations (0, 40, 80, 160, and 400 mg Cu/L), plants were foliarly treated at day-60 and day-74. At day-120, plants were harvested at the end of the flowering stage. Results showed shoot Cu bioaccumulation, flavonoids and anthocyanin increased in a dose-dependent manner for both Cu compounds, but the beneficial effects were significantly higher with CuONPs compared to chelated-Cu treatments. Further, shoot biomass (23 %), photosynthetic pigments (chlorophyll-a and chlorophyll-b; 77 and 123 %, respectively), and essential oil content and yield (70 and 104 %, respectively) increased significantly with foliar application of 80 mg/L CuONPs compared to equivalent concentration of chelated-Cu, suggesting an optimal threshold beyond which toxicity was observed. Likewise, commercially important secondary metabolites' yield (such as geranyl acetate, geranial, neral, and geraniol) was higher with 80 mg/L CuONPs compared to 160 mg/L chelated-Cu (2.3, 0.5, 2.5, and 7.1 %, respectively). TEM analyses of leaf ultrastructure revealed altered cellular organelles for both compounds at 400 mg/L, corroborating the results of oxidative stress response (malondialdehyde and H2O2). In conclusion, these findings indicate significantly higher efficacy of CuONPs, with an optimal threshold of 80 mg/L, in promoting essential oil and bioactive compound yield in dragonhead and may pave a path for the use of nano-Cu as a sustainable fertilizer promoting agricultural production in semi-arid soils that are micronutrient Cu deficient.


Lamiaceae , Nanoparticles , Oils, Volatile , Biomass , Chlorophyll/metabolism , Copper/toxicity , Copper/analysis , Hydrogen Peroxide/analysis , Oils, Volatile/isolation & purification , Oils, Volatile/metabolism , Oxides , Soil , Lamiaceae/growth & development , Lamiaceae/metabolism
16.
Sci Rep ; 12(1): 15645, 2022 Sep 19.
Article En | MEDLINE | ID: mdl-36123425

The seeds of Trachyspermum ammi were gathered at the ripening stage from different regions of Iran and grouped into 14 populations (P1-P14) accordingly. The essential oil (EO) extraction yielded in the 3.16-5% range. EOs were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) and 11 constituents were identified. Thymol (59.92-96.4%), p-cymene (0.55-21.15%), γ-terpinene (0.23-17.78%), and carvacrol (0.41-2.77%) were the major constituents. The highest contents of thymol and carvacrol were found in the Ghayen population (P2). Also, P2 and P8 (Estahban) had the highest value of total phenol (TPC) 43.2 mg gallic acid equivalent (GAE)/g DW, and total flavonoids (TFC) 8.03 mg quercetin equivalent (QE)/g DW, respectively. P1 (Kalat) had the highest total coumarin (TCC) value (0.26 mg coumarin equivalent CE/g DW). Based on EO constituents, principal component analysis (PCA) and cluster analysis classified populations into two chemotypes of thymol/p-cymene/γ-terpinene and thymol/carvacrol. The highest positive correlation coefficient was between α-terpinene and limonene (0.96), while the highest negative correlation was between thymol and p-cymene (-0.984). The antioxidant activities of extracts and EOs were evaluated by phosphomolybdenum (total antioxidant capacity; TAC), diphenylpicrylhydrazyl (DPPH IC50), and ferric ion reducing antioxidant power (FRAP) assays. Also, the antimicrobial activity of EOs was studied against Escherichia coli and Staphylococcus aureus. P8 with high thymol, EO content (%v/w), TFC, and antibacterial and antioxidant activities is recommended but further studies are needed to confirm the chemotype introduction.


Ammi , Oils, Volatile/chemistry , Phenols/analysis , Thymol/analysis , Ammi/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Coumarins , Cyclohexane Monoterpenes , Cymenes/analysis , Gallic Acid/analysis , Gas Chromatography-Mass Spectrometry , Iran , Limonene/analysis , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin/analysis , Seeds/chemistry , Thymol/pharmacology
17.
Pharm Biol ; 60(1): 437-450, 2022 Dec.
Article En | MEDLINE | ID: mdl-35188051

CONTEXT: Ocimum sanctum Linn (Labiatae) (OS), Zingiber officinale Rose (Zingiberaceae) (ZO), and Piper nigrum Linn (Piperaceae) (PN) are used in traditional medicine as immunomodulator, anti-inflammatory, and bioavailability enhancer agents. OBJECTIVE: Active phytoconstituents of OS, ZO, PN hydro-alcoholic extracts and their effects on gut microbiota, basal inflammation and lipid profile were investigated in rats. MATERIALS AND METHODS: Active phytoconstituents of extracts were analysed using HPLC and GC-MS. SD rats were supplemented with individual/combined extracts (OS-850; ZO-500; PN-100 mg/kg Bw) and Fructooligosaccharide (standard prebiotic-5g/kg-Bw), orally for 30 days. Haematology, lipid profile, LPS, CRP, IL-6, insulin and histology of vital organs were analysed. Caecal bacterial levels were assessed by RT-PCR. RESULTS: High content of phenolic compounds luteolin-7-O-glucoside (430 ± 2.3 mg/100g), gallic acid (84.13 ± 1.2 mg/100 g) and flavones (88.18 ± 1.8 mg/100 g) were found in OS, ZO, and PN, respectively. Combined extract was rich in luteolin-7-O-glucoside (266.0 ± 1.80 mg/100 g). Essential oils including methyleugenol (13.96%), 6-shogaol (11.00%), piperine (18.26%), and cyclopentasiloxane (10.06%) were higher in OS, ZO, PN and combined extract. Higher levels of caecal Lactobacillus (1.7-3.4-fold), Bifidobacterium (5.89-28.4-fold), and lower levels of Firmicutes (0.04-0.91-fold), Bacteroides (0.69-0.88-fold) were noted among extracts and FOS supplemented rats. Significant (p < 0.05) decrease in plasma lipid profile and LPS was noted in all supplemented rats. DISCUSSION AND CONCLUSIONS: The current study could be first of its kind in exploring prebiotic potential of OS, ZO, PN and their effect on native gut bacterial population.


Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Female , Zingiber officinale/chemistry , Lipids/blood , Medicine, Traditional , Ocimum sanctum/chemistry , Oils, Volatile/isolation & purification , Piper nigrum/chemistry , Prebiotics/administration & dosage , Rats , Rats, Sprague-Dawley
18.
Molecules ; 27(3)2022 Feb 08.
Article En | MEDLINE | ID: mdl-35164402

This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 µg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 µg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.


Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Artemisia/chemistry , Oils, Volatile/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Drug Resistance, Microbial , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
19.
Molecules ; 27(2)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35056665

The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44-10.22%), benzyl linoleate (1.72-2.17%) and benzyl alcohol (0.18-1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08-3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.


Carbon Dioxide/chemistry , Flowers/chemistry , Narcissus/chemistry , Odorants/analysis , Oils, Volatile/isolation & purification , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Perfume/analysis , Solvents/chemistry
20.
PLoS One ; 17(1): e0262335, 2022.
Article En | MEDLINE | ID: mdl-35073347

Zingiber ottensii, is widely used in Asian traditional remedies for the treatment of many diseases. The present study explores anticancer activity of Z. ottensii essential oil (ZOEO) and its nanoformulations. ZOEO obtained from hydrodistillation of Z. ottensii fresh rhizomes was analysis using gas chromatography mass spectroscopy. Zerumbone (25.21%) was the major compound of ZOEO followed by sabinene (23.35%) and terpene-4-ol (15.97%). Four types of ZOEO loaded nanoformulations; nanoemulsion, microemulsion, nanoemulgels, and microemulgel, were developed. The average droplet size of the nanoemulsion and microemulsion was significantly smaller than that of the nanoemulgel and microemulgel. Comparison with other essential oils of plants of the same family on anticancer activity against A549, MCF-7, HeLa, and K562, ZOEO showed the highest cytotoxicity with IC50 of 43.37±6.69, 9.77±1.61, 23.25±7.73, and 60.49±9.41 µg/mL, respectively. Investigation using flow cytometry showed that ZOEO significantly increased the sub-G1 populations (cell death) in cell cycle analysis and induced cell apoptosis by apoptotic analysis. The developed nanoformulations significantly enhanced cytotoxicity of ZOEO, particularly against MCF-7 with the IC50 of 3.08±2.58, 0.74±0.45, 2.31±0.91, and 6.45±5.84 µg/mL, respectively. Among the four nanoformulations developed in the present study, nanoemulsion and microemulsion were superior to nanoemulgel and microemulgel in delivering ZOEO into cancer cells.


Antineoplastic Agents/therapeutic use , Nanoparticle Drug Delivery System/therapeutic use , Oils, Volatile/therapeutic use , Plant Extracts/therapeutic use , Plant Oils/therapeutic use , Zingiberaceae/chemistry , A549 Cells/drug effects , Antineoplastic Agents/administration & dosage , Cell Line, Tumor/drug effects , Emulsions , Flow Cytometry , HeLa Cells/drug effects , Humans , MCF-7 Cells/drug effects , Oils, Volatile/isolation & purification , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Oils/administration & dosage , Plant Oils/isolation & purification
...