Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38674011

The primary entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nasal mucosa, where viral-induced inflammation occurs. When the immune response fails against SARS-CoV-2, understanding the altered response becomes crucial. This study aimed to compare SARS-CoV-2 immunological responses in the olfactory and respiratory mucosa by focusing on epithelia and nerves. Between 2020 and 2022, we obtained post mortem tissues from the olfactory cleft from 10 patients with histologically intact olfactory epithelia (OE) who died with or from COVID-19, along with four age-matched controls. These tissues were subjected to immunohistochemical reactions using antibodies against T cell antigens CD3, CD8, CD68, and SARS spike protein for viral evidence. Deceased patients with COVID-19 exhibited peripheral lymphopenia accompanied by a local decrease in CD3+ cells in the OE. However, SARS-CoV-2 spike protein was sparsely detectable in the OE. With regard to the involvement of nerve fibers, the present analysis suggested that SARS-CoV-2 did not significantly alter the immune response in olfactory or trigeminal fibers. On the other hand, SARS spike protein was detectable in both nerves. In summary, the post mortem investigation demonstrated a decreased T cell response in patients with COVID-19 and signs of SARS-CoV-2 presence in olfactory and trigeminal fibers.


COVID-19 , Nasal Mucosa , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Male , Female , SARS-CoV-2/immunology , Aged , Middle Aged , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/pathology , Nasal Mucosa/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged, 80 and over , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Olfactory Mucosa/immunology , Olfactory Mucosa/virology , Olfactory Mucosa/pathology , Olfactory Mucosa/metabolism , Adult , Autopsy
2.
Nat Rev Immunol ; 24(6): 381-398, 2024 Jun.
Article En | MEDLINE | ID: mdl-38097777

The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.


COVID-19 , Olfactory Mucosa , SARS-CoV-2 , Humans , Olfactory Mucosa/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Immunity, Mucosal/immunology , Central Nervous System/immunology , Smell/immunology , Smell/physiology
3.
Cell Tissue Res ; 384(3): 589-605, 2021 Jun.
Article En | MEDLINE | ID: mdl-33961125

Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.


Olfactory Mucosa , Olfactory Receptor Neurons , Receptors, Odorant/immunology , Smell/immunology , Animals , Humans , Olfactory Mucosa/cytology , Olfactory Mucosa/immunology , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/immunology
4.
Neurosci Lett ; 748: 135694, 2021 03 23.
Article En | MEDLINE | ID: mdl-33600902

Patients with COVID-19 often complain of smell and taste disorders (STD). STD emerge early in the course of the disease, seem to be more common in SARS-CoV-2 infection than in other upper respiratory tract infections, and could in some cases persist for long after resolution of respiratory symptoms. Current evidence suggests that STD probably result from a loss of function of olfactory sensory neurons and taste buds, mainly caused by infection, inflammation, and subsequent dysfunction of supporting non-neuronal cells in the mucosa. However, the possible occurrence of other mechanisms leading to chemosensory dysfunction has also been hypothesized, and contrasting data have been reported regarding the direct infection of sensory neurons by SARS-CoV-2. In this mini-review, we summarize the currently available literature on pathogenesis, clinical manifestations, diagnosis, and outcomes of STD in COVID-19 and discuss possible future directions of research on this topic.


COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2/pathogenicity , Taste Disorders/etiology , COVID-19/immunology , COVID-19/virology , Humans , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Olfaction Disorders/diagnosis , Olfaction Disorders/epidemiology , Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/immunology , Olfactory Receptor Neurons/pathology , SARS-CoV-2/immunology , Smell/physiology , Taste/physiology , Taste Buds/immunology , Taste Buds/pathology , Taste Disorders/diagnosis , Taste Disorders/epidemiology , Taste Disorders/physiopathology
5.
Rev Neurosci ; 31(7): 691-701, 2020 10 25.
Article En | MEDLINE | ID: mdl-32776905

Just before 2020 began, a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), brought for humans a potentially fatal disease known as coronavirus disease 2019 (COVID-19). The world has thoroughly been affected by COVID-19, while there has been little progress towards understanding the pathogenesis of COVID-19. Patients with a severe phenotype of disease and those who died from the disease have shown hyperinflammation and were more likely to develop neurological manifestations, linking the clinical disease with neuroimmunological features. Anosmia frequently occurs early in the course of COVID-19. The prevalence of anosmia would be influenced by self-diagnosis as well as self-misdiagnosis in patients with COVID-19. Despite this, the association between anosmia and COVID-19 has been a hope for research, aiming to understand the pathogenesis of COVID-19. Studies have suggested differently probable mechanisms for the development of anosmia in COVID-19, including olfactory cleft syndrome, postviral anosmia syndrome, cytokine storm, direct damage of olfactory sensory neurons, and impairment of the olfactory perception center in the brain. Thus, the observation of anosmia would direct us to find the pathogenesis of COVID-19 in the central nervous system, and this is consistent with numerous neurological manifestations related to COVID-19. Like other neurotropic viruses, SARS-CoV-2 might be able to enter the central nervous system via the olfactory epithelium and induce innate immune responses at the site of entry. Viral replication in the nonneural olfactory cells indirectly causes damage to the olfactory receptor nerves, and as a consequence, anosmia occurs. Further studies are required to investigate the neuroimmunology of COVID-19 in relation to anosmia.


Coronavirus Infections/complications , Olfaction Disorders/etiology , Pneumonia, Viral/complications , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Humans , Immunity, Innate , Olfaction Disorders/immunology , Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Mucosa/physiopathology , Olfactory Receptor Neurons/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology
6.
ACS Chem Neurosci ; 11(9): 1200-1203, 2020 05 06.
Article En | MEDLINE | ID: mdl-32283006

The novel SARS-CoV-2 virus has very high infectivity, which allows it to spread rapidly around the world. Attempts at slowing the pandemic at this stage depend on the number and quality of diagnostic tests performed. We propose that the olfactory epithelium from the nasal cavity may be a more appropriate tissue for detection of SARS-CoV-2 virus at the earliest stages, prior to onset of symptoms or even in asymptomatic people, as compared to commonly used sputum or nasopharyngeal swabs. Here we emphasize that the nasal cavity olfactory epithelium is the likely site of enhanced binding of SARS-CoV-2. Multiple non-neuronal cell types present in the olfactory epithelium express two host receptors, ACE2 and TMPRSS2 proteases, that facilitate SARS-CoV-2 binding, replication, and accumulation. This may be the underlying mechanism for the recently reported cases of smell dysfunction in patients with COVID-19. Moreover, the possibility of subsequent brain infection should be considered which begins in olfactory neurons. In addition, we discuss the possibility that olfactory receptor neurons may initiate rapid immune responses at early stages of the disease. We emphasize the need to undertake research focused on additional aspects of SARS-CoV-2 actions in the nervous system, especially in the olfactory pathway.


Betacoronavirus/isolation & purification , Brain/virology , Coronavirus Infections/diagnosis , Early Diagnosis , Mass Screening/methods , Olfactory Mucosa/virology , Pneumonia, Viral/diagnosis , Smell , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/growth & development , Betacoronavirus/immunology , Brain/immunology , Brain/physiopathology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Coronavirus Infections/transmission , Humans , Immunity, Innate , Mass Screening/standards , Mice , Olfactory Mucosa/cytology , Olfactory Mucosa/immunology , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/immunology , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/transmission , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Replication
7.
Immunol Allergy Clin North Am ; 40(2): 223-232, 2020 05.
Article En | MEDLINE | ID: mdl-32278447

Olfactory dysfunction (OD) is one of the cardinal symptoms of chronic rhinosinusitis (CRS), and its prevalence ranges from 60% to 80% in patients with CRS. It is much more common in CRS with nasal polyposis patients compared to CRS without nasal polyposis. Decreased olfactory function is associated with significant decreases in patient-reported quality of life (QOL), and notably, depression and the enjoyment of food. Objective measures can help detail the degree of OD, whereas subjective measures can help to determine in the impact on patient. There is variable treatment response to OD with both medical and surgical therapies.


Nasal Polyps/epidemiology , Olfaction Disorders/epidemiology , Olfactory Mucosa/immunology , Rhinitis/epidemiology , Sinusitis/epidemiology , Chronic Disease , Endoscopy , Humans , Nasal Polyps/diagnosis , Nasal Polyps/therapy , Olfaction Disorders/diagnosis , Olfaction Disorders/therapy , Prevalence , Rhinitis/diagnosis , Rhinitis/therapy , Risk , Sinusitis/diagnosis , Sinusitis/therapy , Smell , Steroids/therapeutic use
8.
Viruses ; 11(8)2019 08 16.
Article En | MEDLINE | ID: mdl-31426334

Murid herpesvirus-4 (MuHV-4), a natural gammaherpesvirus of rodents, can infect the mouse through the nasal mucosa, where it targets sustentacular cells and olfactory neurons in the olfactory epithelium before it propagates to myeloid cells and then to B cells in lymphoid tissues. After establishment of latency in B cells, viral reactivation occurs in the genital tract in 80% of female mice, which can lead to spontaneous sexual transmission to co-housed males. Interferon-lambda (IFN-λ) is a key player of the innate immune response at mucosal surfaces and is believed to limit the transmission of numerous viruses by acting on epithelial cells. We used in vivo plasmid-mediated IFN-λ expression to assess whether IFN-λ could prophylactically limit MuHV-4 infection in the olfactory and vaginal mucosae. In vitro, IFN-λ decreased MuHV-4 infection in cells that overexpressed IFN-λ receptor 1 (IFNLR1). In vivo, prophylactic IFN-λ expression decreased infection of the olfactory epithelium but did not prevent virus propagation to downstream organs, such as the spleen where the virus establishes latency. In the olfactory epithelium, sustentacular cells readily responded to IFN-λ. In contrast, olfactory neurons did not respond to IFN-λ, thus, likely allowing viral entry. In the female genital tract, columnar epithelial cells strongly responded to IFN-λ, as did most vaginal epithelial cells, although with some variation from mouse to mouse. IFN-λ expression, however, failed to prevent virus reactivation in the vaginal mucosa. In conclusion, IFN-λ decreased MuHV-4 replication in the upper respiratory epithelium, likely by protecting the sustentacular epithelial cells, but it did not protect olfactory neurons and failed to block virus reactivation in the genital mucosa.


Herpesviridae Infections/virology , Interferons/immunology , Interleukins/immunology , Mucous Membrane/virology , Olfactory Mucosa/virology , Receptors, Interferon/immunology , Rhadinovirus/physiology , Vagina/virology , Virus Activation , Animals , Female , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Humans , Interferons/genetics , Interleukins/genetics , Male , Mice, Inbred BALB C , Mucous Membrane/immunology , Olfactory Mucosa/immunology , Receptors, Interferon/genetics , Rhadinovirus/genetics , Vagina/immunology
9.
Brain Behav Immun ; 79: 274-283, 2019 07.
Article En | MEDLINE | ID: mdl-30776474

At the interface of the environment and the nervous system, the olfactory mucosa (OM) is a privileged pathway for environmental toxicants and pathogens towards the central nervous system. The OM is known to produce antimicrobial and immunological components but the mechanisms of action of the immune system on the OM remain poorly explored. IL-17c is a potent mediator of respiratory epithelial innate immune responses, whose receptors are highly expressed in the OM of mice. We first characterized the presence of the IL-17c and its receptors in the OM. While IL-17c was weakly expressed in the control condition, it was strongly expressed in vivo after intranasal administration of polyinosinic-polycytidylic (Poly I:C), a Toll Like Receptor 3 agonist, mimicking a viral infection. Using calcium imaging and electrophysiological recordings, we found that IL-17c can effectively activate OM cells through the release of ATP. In the longer term, intranasal chronic instillations of IL-17c increased the cellular dynamics of the epithelium and promoted immune cells infiltrations. Finally, IL-17c decreased cell death induced by Poly(I:C) in an OM primary culture. The OM is thus a tissue highly responsive to immune mediators, proving its central role as a barrier against airway pathogens.


Interleukin-17/immunology , Olfactory Mucosa/immunology , Poly I-C/pharmacology , Administration, Intranasal , Animals , Female , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Interleukin-17/metabolism , Male , Mice , Olfactory Mucosa/drug effects , Olfactory Mucosa/metabolism , Primary Cell Culture
10.
Adv Biosyst ; 3(12): e1900123, 2019 12.
Article En | MEDLINE | ID: mdl-32648679

The nose-to-brain (N-to-B) transport mechanism of nanoparticles through the olfactory epithelium (OE) is not fully understood. Most research utilized nasal epithelial cell models completely deprived of olfactory cells. Aiming to shed light into key cellular pathways, in this work, for the first time, the interaction of polymeric nanoparticles in a 17-483 nm size range and with neutral and negatively and positively charged surfaces with primary olfactory sensory neurons, cortical neurons, and microglia isolated from olfactory bulb (OB), OE, and cortex of newborn rats is investigated. After demonstrating the good cell compatibility of the different nanoparticles, the nanoparticle uptake by confocal laser scanning fluorescence microscopy is monitored. Our findings reveal that neither olfactory nor forebrain neurons internalize nanoparticles. Conversely, it is demonstrated that olfactory and cortical microglia phagocytose the nanoparticles independently of their features. Overall, our findings represent the first unambiguous evidence of the possible involvement of microglia in N-to-B nanoparticle transport and the unlikely involvement of neurons. Furthermore, this approach emerges as a completely new experimental tool to screen the biocompatibility, uptake, and transport of nanomaterials by key cellular players of the N-to-B pathway in nanosafety and nanotoxicology and nanomedicine.


Nanoparticles/metabolism , Olfactory Mucosa , Polymers/pharmacokinetics , Prosencephalon , Animals , Cells, Cultured , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Microglia/cytology , Microglia/immunology , Microglia/metabolism , Nanoparticles/chemistry , Neurons/cytology , Neurons/immunology , Neurons/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/immunology , Olfactory Mucosa/metabolism , Particle Size , Polymers/chemistry , Prosencephalon/cytology , Prosencephalon/immunology , Prosencephalon/metabolism , Rats
11.
Dev Comp Immunol ; 92: 212-222, 2019 03.
Article En | MEDLINE | ID: mdl-30513304

The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.


Infections/immunology , Lymphoid Tissue/immunology , Nasopharynx/immunology , Nose Diseases/immunology , Olfactory Bulb/immunology , Olfactory Mucosa/immunology , Animals , Disease Models, Animal , Host-Pathogen Interactions , Humans , Immunity , Mice
12.
J Gen Virol ; 100(2): 246-258, 2019 02.
Article En | MEDLINE | ID: mdl-30526737

Protecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry - unlike in the lungs, opsonized virions did not reach IgG Fc receptor+ myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.


Antibodies, Viral/immunology , Herpesviridae Infections/immunology , Herpesviridae/immunology , Olfactory Mucosa/immunology , Olfactory Mucosa/virology , Animals , Mice , Virus Attachment , Virus Internalization , Virus Replication
13.
PLoS One ; 12(10): e0187192, 2017.
Article En | MEDLINE | ID: mdl-29077773

Nasal mucosa and olfactory bulb are separated by the cribriform plate which is perforated by olfactory nerves. We have previously demonstrated that the cribriform plate is permissive for T cells and monocytes and that viruses can enter the bulb upon intranasal injection by axonal transportation. Therefore, we hypothesized that nasal mucosa and olfactory bulb are equipped to deal with constant infectious threats. To detect genes involved in this process, we compared gene expression in nasal mucosa and bulb of mice kept under specific pathogen free (SPF) conditions to gene expression of mice kept on non-SPF conditions using RNA deep sequencing. We found massive alterations in the expression of immune-related genes of the nasal mucosa, while the bulb did not respond immunologically. The absence of induction of immune-related genes in the olfactory bulb suggests effective defence mechanisms hindering entrance of environmental pathogens beyond the outer arachnoid layer. The genes detected in this study may include candidates conferring susceptibility to meningitis.


Nasal Mucosa/immunology , Olfactory Bulb/immunology , Olfactory Mucosa/immunology , Animals , Mice , Sequence Analysis, RNA
14.
Proc Natl Acad Sci U S A ; 114(30): 8089-8094, 2017 07 25.
Article En | MEDLINE | ID: mdl-28696292

Adult neural stem cells/progenitor cells residing in the basal layer of the olfactory epithelium are capable of reconstituting the neuroepithelium even after severe damage. The molecular events underlying this regenerative capacity remain elusive. Here we show that the repair of neuroepithelium after lesioning is accompanied by an acute, but self-limited, inflammatory process. Attenuation of inflammatory cell recruitment and cytokine production by dexamethasone impairs proliferation of progenitor horizontal basal cells (HBCs) and subsequent neuronal differentiation. Using TNF-α receptor-deficient mice, we identify TNF-α signaling as an important contributor to this inflammatory and reparative process, mainly through TNF-α receptor 1. HBC-selective genetic ablation of RelA (p65), the transcriptional activator of the NF-κB pathway, retards inflammation and impedes proliferation at the early stages of regeneration and suggests HBCs directly participate in cross-talk between immune response and neurogenesis. Loss of RelA in the regenerating neuroepithelium perturbs the homeostasis between proliferation and apoptosis while enhancing JNK signaling. Together, our results support a model in which acute inflammation after injury initiates important regenerative signals in part through NF-κB-mediated signaling that activates neural stem cells to reconstitute the olfactory epithelium.


Nerve Regeneration , Olfactory Mucosa/immunology , Transcription Factor RelA/metabolism , Animals , Inflammation/metabolism , Mice, Knockout , Olfactory Mucosa/metabolism , Transcription Factor RelA/genetics
15.
Arch Toxicol ; 90(8): 1949-58, 2016 Aug.
Article En | MEDLINE | ID: mdl-27055686

The olfactory system can be a toxicological target of volatile organic compounds present in indoor air. Recently, 2-ethyl-1-hexanol (2E1H) emitted from adhesives and carpeting materials has been postulated to cause "sick building syndrome." Patients' symptoms are associated with an increased sense of smell. This investigation aimed to characterize the histopathological changes of the olfactory epithelium (OE) of the nasal cavity and the olfactory bulb (OB) in the brain, due to subchronic exposure to 2E1H. Male ICR mice were exposed to 0, 20, 60, or 150 ppm 2E1H for 8 h every day for 1 week, or 5 days per week for 1 or 3 months. After a 1-week exposure, the OE showed inflammation and degeneration, with a significant concentration-dependent reduction in the staining of olfactory receptor neurons and in the numbers of globose basal cells at ≥20 ppm. Regeneration occurred at 1 month along with an increase in the basal cells, but lymphocytic infiltration, expanded Bowman's glands, and a decrease in the olfactory receptor neurons were observed at 3 months. Intriguingly, the OB at 3 months showed a reduction in the diameters of the glomeruli and in the number of olfactory nerves and tyrosine hydroxylase-positive neurons, but an increased number of ionized calcium-binding adaptor molecule 1-positive microglia in glomeruli. Accordingly, 2E1H inhalation induced degeneration of the OE with the lowest-observed-adverse-effect level of 20 ppm. The altered number of functional cell components in the OB suggests that effects on olfactory sensation persist after subchronic exposure to 2E1H.


Air Pollutants/toxicity , Hexanols/toxicity , Inhalation Exposure/adverse effects , Olfactory Bulb/drug effects , Olfactory Mucosa/drug effects , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Male , Mice, Inbred ICR , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Olfactory Bulb/immunology , Olfactory Bulb/pathology , Olfactory Mucosa/immunology , Olfactory Mucosa/pathology , Organ Size/drug effects , Time Factors
16.
Acta Virol ; 59(4): 338-49, 2015 Dec.
Article En | MEDLINE | ID: mdl-26666182

Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal models by scientists in many fields including virologists, pathologists, and neurologists. In humans, herpes simplex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and influenza A virus have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. This article briefly summarizes the anatomy, physiology, and immunology of the olfactory system and presents a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral pathway, especially focusing on two of the most intensively studied viruses--HSV-1 and influenza A virus. Viruses may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but also to promote the development of neurodegenerative and demyelinating disorders. Substantial information obtained by analyzing human specimens is required to argue for or against this hypothesis.


Brain/virology , Olfactory Mucosa/virology , Virus Diseases/virology , Virus Physiological Phenomena , Animals , Brain/immunology , Humans , Olfactory Mucosa/immunology , Virus Diseases/immunology
17.
Int Forum Allergy Rhinol ; 5(12): 1141-50, 2015 Dec.
Article En | MEDLINE | ID: mdl-26346056

BACKGROUND: Cathelicidin (LL-37) is an endogenous innate immune peptide that is elevated in patients with chronic rhinosinusitis (CRS). The role of LL-37 in olfactory epithelium (OE) inflammation remains unknown. We hypothesized that: (1) LL-37 topically delivered would elicit profound OE inflammation; and (2) LL-37 induced inflammation is associated with increased infiltration of neutrophils and mast cells. METHODS: To test our hypothesis we challenged C57BL/6 mice intranasally with increasing concentrations of LL-37. At 24 hours tissues were examined histologically and scored for inflammatory cell infiltrate, edema, and secretory hyperplasia. In separate experiments, fluorescently conjugated LL-37 was instilled and tissues were examined at 0.5 and 24 hours. To test our last hypothesis, we performed tissue myeloperoxidase (MPO) assays for neutrophil activity and immunohistochemistry for tryptase to determine the mean number of mast cells per mm(2) . RESULTS: LL-37 caused increased inflammatory cell infiltrate, edema, and secretory cell hyperplasia of the sinonasal mucosa, with higher LL-37 concentrations yielding significantly more inflammatory changes (p < 0.01). Fluorescent LL-37 demonstrated global sinonasal epithelial binding and tissue distribution. Further, higher concentrations of LL-37 led to significantly greater MPO levels with dose-dependent increases in mast cell infiltration (p < 0.01). CONCLUSION: LL-37 has dramatic inflammatory effects in the OE mucosa that is dose-dependent. The observed inflammatory changes in the olfactory mucosa were associated with the infiltration of both neutrophils and mast cells. Our biologic model represents a new model to further investigate the role of LL-37 in OE inflammation.


Antimicrobial Cationic Peptides/administration & dosage , Inflammation/immunology , Olfactory Mucosa/immunology , Rhinitis/immunology , Sinusitis/immunology , Administration, Topical , Animals , Antimicrobial Cationic Peptides/adverse effects , Cells, Cultured , Chronic Disease , Disease Models, Animal , Humans , Immunity, Innate/drug effects , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Olfactory Mucosa/drug effects , Rhinitis/drug therapy , Sinusitis/drug therapy , Cathelicidins
18.
Cell Tissue Res ; 357(1): 279-99, 2014 Jul.
Article En | MEDLINE | ID: mdl-24744264

The pathogenesis of postviral olfactory disorder (PVOD) has not been fully elucidated. We investigated morphological changes and innate immune responses in the mouse olfactory mucosa induced by intranasal administration of polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA. Mice received three administrations of saline with or without Poly(I:C), once every 24 h. The olfactory mucosa was harvested at various intervals after the first administration (8 h, 3, 9 and 24 days). In the Poly(I:C) group, the number of apoptotic cells in the olfactory neuroepithelium had increased at 8 h. At 9 days, the olfactory neuroepithelium had severely degenerated and behavioral tests demonstrated that the mice showed signs of olfactory deterioration. At 24 days, the structure of the neuroepithelium had regenerated almost completely. Regarding the innate immune responses, many neutrophils had infiltrated the olfactory neuroepithelium at 8 h and had exuded into the nasal cavity by 3 days. Macrophages had also infiltrated the olfactory neuroepithelium at 8 h although to a lesser extent, but they still remained in the neuroepithelium at 24 days. Poly(I:C)-induced neuroepithelial damage was significantly inhibited by a neutrophil elastase inhibitor and was suppressed in neutropenic model mice. These findings suggest that the secondary damage caused by the neutrophil-mediated innate immune response plays an important role in the pathogenesis of PVOD.


Interferon Inducers/pharmacology , Nerve Regeneration/drug effects , Olfactory Mucosa/drug effects , Poly I-C/pharmacology , Administration, Intranasal , Animals , Disease Models, Animal , Female , Immunity, Innate/drug effects , Immunohistochemistry , Mice , Mice, Inbred ICR , Nerve Regeneration/physiology , Olfactory Mucosa/cytology , Olfactory Mucosa/immunology , Olfactory Mucosa/innervation , Pancreatic Elastase/antagonists & inhibitors
19.
Brain Res ; 1534: 13-21, 2013 Oct 09.
Article En | MEDLINE | ID: mdl-23978455

Monoclonal antibody (mAb) engineering that optimizes binding to receptors present on brain vascular endothelial cells has enabled them to cross through the blood-brain barrier (BBB) and access the brain parenchyma to treat neurological diseases. However, once in the brain the extent to which receptor-mediated reverse transcytosis clears mAb from the brain is unknown. The aim of this study was to determine the contribution of the neonatal Fc-receptor (FcRn) in rat brain efflux employing two different in vivo drug delivery models. Two mAb variants with substantially different affinities to FcRn, and no known neuronal targets, (IgG1 N434A and H435A) were administered to rats via intranasal-to-central nervous system (CNS) and intra-cranial dosing techniques. Levels of full-length IgG were quantified in serum and brain hemispheres by a sensitive enzyme-linked immunosorbent assay (ELISA). Following intra-nasal delivery, low cerebral hemisphere levels of variants were obtained at 20min, with a trend towards faster clearance of the high FcRn binder (N434A); however, the relatively higher serum levels confounded analysis of brain FcRn contribution to efflux. Using stereotaxic coordinates, we optimized the timing and dosing regimen for injection of mAb into the cortex. Levels of N434A, but not H435A, decreased in the cerebral hemispheres following bilateral injection into the rat cortex and higher levels of N434A were detected in serum compared to H435A after 24h. Immunohistochemical staining of human IgG1 in sections of cortex was consistent with these results, illustrating relatively less intense immunostaining in N434A than H435A dosed animals. Using two in vivo methods with direct cranial administration, we conclude that FcRn plays an important role in efflux of IgG from the rat brain.


Antibodies, Monoclonal/pharmacokinetics , Brain/immunology , Brain/metabolism , Histocompatibility Antigens Class I/immunology , Immunoglobulin G/metabolism , Receptors, Fc/immunology , Animals , Antibodies, Monoclonal/blood , Drug Delivery Systems , Immunoglobulin G/blood , Male , Olfactory Mucosa/immunology , Rats , Rats, Sprague-Dawley
20.
Int Forum Allergy Rhinol ; 3(9): 740-7, 2013 Sep.
Article En | MEDLINE | ID: mdl-23733314

BACKGROUND: Olfactory loss is a debilitating symptom of chronic rhinosinusitis. To study the impact of inflammation on the olfactory system, the inducible olfactory inflammation (IOI) transgenic mouse was created in which inflammation can be turned on and off within the olfactory epithelium. In this study, the type II tumor necrosis factor (TNF) receptor (TNFR2) was knocked out, and the effect on the olfactory loss phenotype was assessed. METHODS: IOI mice were bred to TNFR2 knockout mice to yield progeny IOI mice lacking the TNFR2 receptor (TNFR2(-/-) ). TNF-α expression was induced within the olfactory epithelium for 6 weeks to generate chronic inflammation. Olfactory function was assayed by electro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. RESULTS: Compared to IOI mice with wild-type TNFR2, IOI mice lacking the TNFR2 demonstrated similar levels of inflammatory infiltration and enlargement of the subepithelial layer. However, IOI-TNFR2(-/-) mice differed markedly in that the neuronal layer was largely preserved and active progenitor cell proliferation was present. Odorant responses were maintained in the IOI-TNFR2(-/-) mice, in contrast to IOI mice. CONCLUSION: TNFR2 is the minor receptor for TNF-α, but appears to play an important role in mediating TNF-induced disruption of the olfactory system. This finding suggests that neuronal death and inhibition of proliferation in CRS may be mediated by TNFR2 on olfactory neurons and progenitor cells. Further studies are needed to elucidate the subcellular pathways involved and develop novel therapies for treating olfactory loss in the setting of CRS.


Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Receptor Neurons/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Rhinitis/physiopathology , Sinusitis/physiopathology , Animals , Cell Death/genetics , Cell Survival/genetics , Cells, Cultured , Chronic Disease , Humans , Inflammation/genetics , Mice , Mice, Knockout , Mice, Transgenic , Olfaction Disorders/immunology , Receptors, Tumor Necrosis Factor, Type II/genetics , Rhinitis/immunology , Sinusitis/immunology , Smell/genetics , Smell/immunology , Tumor Necrosis Factor-alpha/immunology
...