Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738602

RESUMEN

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Asunto(s)
Proteínas de Drosophila , Morfogénesis , Proteínas del Tejido Nervioso , Neurópilo , Lóbulo Óptico de Animales no Mamíferos , Receptores de Superficie Celular , Semaforinas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Morfogénesis/genética , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Neuronas/metabolismo , Drosophila/metabolismo , Drosophila/embriología , Mutación/genética
2.
Curr Top Dev Biol ; 139: 89-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32450970

RESUMEN

The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.


Asunto(s)
Diferenciación Celular/genética , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Animales , Drosophila/clasificación , Drosophila/embriología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ojo/embriología , Ojo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/citología , Retina/embriología , Retina/metabolismo
3.
Dev Biol ; 461(2): 145-159, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061586

RESUMEN

scarecrow (scro) gene encodes a Drosophila homolog of mammalian Nkx2.1 that belongs to an evolutionally conserved NK2 family. Nkx2.1 has been well known for its role in the development of hypothalamus, lung, thyroid gland, and brain. However, little is known about biological roles of scro. To understand scro functions, we generated two types of knock-in mutant alleles, substituting part of either exon-2 or exon-3 for EGFP (or Gal4) by employing the CRISPR/Cas9 genome editing tool. Using these mutations, we characterized spatio-temporal expression patterns of the scro gene and its mutant phenotypes. Homozygous knock-in mutants are lethal during embryonic and early larval development. In developing embryos, scro is exclusively expressed in the pharyngeal primordia and numerous neural clusters in the central nervous system (CNS). In postembryonic stages, the most prominent scro expression is detected in the larval and adult optic lobes, suggesting that scro plays a role for the development and/or function of this tissue type. Notch signaling is the earliest factor known to act for the development of the optic lobe. scro mutants lacked mitotic cells and Delta expression in the optic anlagen, and showed altered expression of several proneural and neurogenic genes including Delta and Notch. Furthermore, scro mutants showed grossly deformed neuroepithelial (NE) cells in the developing optic lobe and severely malformed adult optic lobes, the phenotypes of which are shown in Notch or Delta mutants, suggesting scro acting epistatic to the Notch signaling. From these data together, we propose that scro plays an essential role for the development of the optic lobe, possibly acting as a regional specification factor.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas de Homeodominio/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Alelos , Animales , Encéfalo/crecimiento & desarrollo , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Exones/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Larva , Proteínas de la Membrana/fisiología , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Receptores Notch/fisiología
4.
Elife ; 82019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30794154

RESUMEN

In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.


Asunto(s)
Diferenciación Celular , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Células Neuroepiteliales/fisiología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Animales , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal
5.
Development ; 146(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30642835

RESUMEN

In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.


Asunto(s)
Movimiento Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Neuronas/citología , Neuronas/metabolismo , Transcripción Genética , Animales , Axones/metabolismo , Movimiento Celular/genética , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Silenciador del Gen , Actividad Motora , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Activación Transcripcional/genética
6.
J Neurosci ; 38(26): 5854-5871, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29793976

RESUMEN

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development of retinotectal connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan-Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutants displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb-/-) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/Cybb is important for retinotectal development in zebrafish.SIGNIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development and function largely by in vitro studies. However, whether Nox is involved in the development of axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform, Nox2/Cybb, is important for the establishment of axonal connections between retinal ganglion cells and the optic tectum.


Asunto(s)
NADPH Oxidasa 2/metabolismo , Neurogénesis/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/embriología , Vías Visuales/embriología , Animales , Embrión no Mamífero , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/metabolismo , Vías Visuales/metabolismo , Pez Cebra
7.
J Morphol ; 279(1): 75-85, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29044653

RESUMEN

The optic lobe is the largest brain area within the central nervous system of cephalopods and it plays important roles in the processing of visual information, the regulation of body patterning, and locomotive behavior. The oval squid Sepioteuthis lessoniana has relatively large optic lobes that are responsible for visual communication via dynamic body patterning. It has been observed that the visual behaviors of oval squids change as the animals mature, yet little is known about how the structure of the optic lobes changes during development. The aim of the present study was to characterize the ontogenetic changes in neural organization of the optic lobes of S. lessoniana from late embryonic stage to adulthood. Magnetic resonance imaging and micro-CT scans were acquired to reconstruct the 3D-structure of the optic lobes and examine the external morphology at different developmental stages. In addition, optic lobe slices with nuclear staining were used to reveal changes in the internal morphology throughout development. As oval squids mature, the proportion of the brain making up the optic lobes increases continuously, and the optic lobes appear to have a prominent dent on the ventrolateral side. Inside the optic lobe, the cortex and the medulla expand steadily from the late embryonic stage to adulthood, but the cell islands in the tangential zone of the optic lobe decrease continuously in parallel. Interestingly, the size of the nuclei of cells within the medulla of the optic lobe increases throughout development. These findings suggest that the optic lobe undergoes continuous external morphological change and internal neural reorganization throughout the oval squid's development. These morphological changes in the optic lobe are likely to be responsible for changes in the visuomotor behavior of oval squids from hatching to adulthood.


Asunto(s)
Decapodiformes/anatomía & histología , Decapodiformes/embriología , Embrión no Mamífero/anatomía & histología , Desarrollo Embrionario , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Lóbulo Óptico de Animales no Mamíferos/embriología , Animales , Núcleo Celular/metabolismo , Decapodiformes/citología , Embrión no Mamífero/citología , Imagenología Tridimensional , Lóbulo Óptico de Animales no Mamíferos/citología
8.
Science ; 357(6354): 886-891, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28860380

RESUMEN

Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.


Asunto(s)
Drosophila melanogaster/embriología , Neurogénesis , Neuroglía/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Células Fotorreceptoras de Invertebrados/citología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Lóbulo Óptico de Animales no Mamíferos/citología , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Transducción de Señal
9.
Dev Biol ; 428(1): 1-24, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533086

RESUMEN

Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates.


Asunto(s)
Drosophila melanogaster/embriología , Neurópilo/citología , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Lóbulo Óptico de Animales no Mamíferos/embriología , Animales , Ojo/embriología , Larva/crecimiento & desarrollo
10.
Development ; 143(13): 2431-42, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381228

RESUMEN

Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC.


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila melanogaster/genética , Genes de Insecto , Células Neuroepiteliales/metabolismo , Neurogénesis/genética , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/embriología , Animales , Diferenciación Celular/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/metabolismo , Transición Epitelial-Mesenquimal/genética , Pruebas Genéticas , Mutación/genética , Células Neuroepiteliales/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Retina/metabolismo , Células Madre/citología
11.
Curr Top Dev Biol ; 116: 247-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26970623

RESUMEN

How stem cells produce the huge diversity of neurons that form the visual system, and how these cells are assembled in neural circuits are a critical question in developmental neurobiology. Investigations in Drosophila have led to the discovery of several basic principles of neural patterning. In this chapter, we provide an overview of the field by describing the development of the Drosophila visual system, from the embryo to the adult and from the gross anatomy to the cellular level. We then explore the general molecular mechanisms identified that might apply to other neural structures in flies or in vertebrates. Finally, we discuss the major challenges that remain to be addressed in the field.


Asunto(s)
Encéfalo/embriología , Drosophila/embriología , Ojo/embriología , Lóbulo Óptico de Animales no Mamíferos/embriología , Animales , Evolución Biológica , Encéfalo/crecimiento & desarrollo , Drosophila/crecimiento & desarrollo , Embrión no Mamífero , Células Neuroepiteliales/fisiología , Neuronas
12.
Development ; 143(7): 1134-48, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26903505

RESUMEN

The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly.


Asunto(s)
Axones/metabolismo , Biomarcadores de Tumor/genética , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/embriología , Células Ganglionares de la Retina/citología , Vías Visuales/embriología , Animales , Blastómeros/citología , Células Cultivadas , Embrión no Mamífero/embriología , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/genética , Morfolinos/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neurogénesis/fisiología , Ratas , Ratas Endogámicas F344 , Células Ganglionares de la Retina/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1 , Vías Visuales/metabolismo , Xenopus laevis
13.
Dev Biol ; 404(2): 61-75, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26022392

RESUMEN

In the developing Drosophila optic lobe, cell death occurs via apoptosis and in a distinctive spatio-temporal pattern of dying cell clusters. We analyzed the role of effector caspases drICE and dcp-1 in optic lobe cell death and subsequent corpse clearance using mutants. Neurons in many clusters required either drICE or dcp-1 and each one is sufficient. This suggests that drICE and dcp-1 function in cell death redundantly. However, dying neurons in a few clusters strictly required drICE but not dcp-1, but required drICE and dcp-1 when drICE activity was reduced via hypomorphic mutation. In addition, analysis of the mutants suggests an important role of effecter caspases in corpse clearance. In both null and hypomorphic drICE mutants, greater number of TUNEL-positive cells were observed than in wild type, and many TUNEL-positive cells remained until later stages. Lysotracker staining showed that there was a defect in corpse clearance in these mutants. All the results suggested that drICE plays an important role in activating corpse clearance in dying cells, and that an additional function of effector caspases is required for the activation of corpse clearance as well as that for carrying out cell death.


Asunto(s)
Apoptosis/genética , Caspasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Lóbulo Óptico de Animales no Mamíferos/embriología , Animales , Caspasas/genética , Proteínas de Drosophila/genética , Ojo/embriología , Ojo/inervación , Etiquetado Corte-Fin in Situ , Mutación/genética , Neuronas/metabolismo
14.
Neural Dev ; 9: 18, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25074684

RESUMEN

BACKGROUND: During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS: We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION: We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Células Neuroepiteliales/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila melanogaster
15.
PLoS One ; 9(7): e101433, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25003205

RESUMEN

As one of the major hydrolases in Drosophila, trehalase (Treh) catalyzes the hydrolysis of trehalose into glucose providing energy for flight muscle activity. Treh is highly conserved from bacteria to humans, but little is known about its function during animal development. Here, we analyze the function of Treh in Drosophila optic lobe development. In the optic lobe, neuroepithelial cells (NEs) first divide symmetrically to expand the stem cell pool and then differentiate into neuroblasts, which divide asymmetrically to generate medulla neurons. We find that the knockdown of Treh leads to a loss of the lamina and a smaller medulla. Analyses of Treh RNAi-expressing clones and loss-of-function mutants indicate that the lamina and medulla phenotypes result from neuroepithelial disintegration and premature differentiation into medulla neuroblasts. Although the principal role of Treh is to generate glucose, the Treh loss-of-function phenotype cannot be rescued by exogenous glucose. Thus, our results indicate that in addition to being a hydrolase, Treh plays a role in neuroepithelial stem cell maintenance and differentiation during Drosophila optic lobe development.


Asunto(s)
Diferenciación Celular , Drosophila/fisiología , Células Neuroepiteliales/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Células Madre/citología , Trehalasa/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Drosophila/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Masculino , Mutación , Células Neuroepiteliales/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Trehalasa/genética
16.
Development ; 141(14): 2838-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24924198

RESUMEN

The visual system of insects is a multilayered structure composed externally by the compound eye and internally by the three ganglia of the optic lobe: lamina, medulla and the lobula complex. The differentiation of lamina neurons depends heavily on Hedgehog (Hh) signaling, which is delivered by the incoming photoreceptor axons, and occurs in a wave-like fashion. Despite the primary role of lamina neurons in visual perception, it is still unclear how these neurons are specified from neuroepithelial (NE) progenitors. Here we show that a homothorax (hth)-eyes absent (eya)-sine oculis (so)-dachshund (dac) gene regulatory cassette is involved in this specification. Lamina neurons differentiate from NE progenitors that express hth, eya and so. One of the first events in the differentiation of lamina neurons is the upregulation of dac expression in response to Hh signaling. We show that this dac upregulation, which marks the transition from NE progenitors into lamina precursors, also requires Eya/So, the expression of which is locked in by mutual feedback. dac expression is crucial for lamina differentiation because it ensures repression of hth, a negative regulator of single-minded, and thus dac allows further lamina neuron differentiation. Therefore, the specification of lamina neurons is controlled by coupling the cell-autonomous hth-eya-so-dac regulatory cassette to Hh signaling.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/embriología , Ojo/metabolismo , Redes Reguladoras de Genes , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Elementos de Facilitación Genéticos/genética , Ojo/citología , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/citología , Retina/embriología , Retina/metabolismo , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética
17.
Development ; 141(10): 2131-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803658

RESUMEN

The chick optic tectum consists of 16 laminae. Here, we report contribution of En2 to laminar formation in chick optic tecta. En2 is specifically expressed in laminae g-j of stratum griseum et fibrosum superficiale (SGFS). Misexpression of En2 resulted in disappearance of En2-expressing cells from the superficial layers (laminae a-f of SGFS), where endogenous En2 is not expressed. Misexpression of En2 before postmitotic cells had left the ventricular layer indicated that En2-misexpressing cells stopped at the laminae of endogenous En2 expression and that they did not migrate into the superficial layers. Induction of En2 misexpression using a tetracycline-inducible system after the postmitotic cells had reached superficial layers also resulted in disappearance of En2-expressing cells from the superficial layers. Time-lapse analysis showed that En2-misexpressing cells migrated back from the superficial layers towards the middle layers, where En2 is strongly expressed endogenously. Our results suggest a potential role of En2 in regulating cell migration and positioning in the tectal laminar formation.


Asunto(s)
Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Techo del Mesencéfalo/embriología , Animales , Animales Modificados Genéticamente , Movimiento Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Neuronas/citología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/embriología , Retina/metabolismo , Techo del Mesencéfalo/metabolismo
18.
Genetics ; 195(4): 1291-306, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24077308

RESUMEN

The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Quinasas Janus/metabolismo , Proteínas Nucleares/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Quinasas Janus/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neurogénesis , Proteínas Nucleares/genética , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Especificidad de Órganos , Proteínas de Unión al ARN , Factores de Transcripción STAT/genética
19.
J Comp Neurol ; 521(16): 3716-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23749685

RESUMEN

Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/anatomía & histología , Cuerpos Pedunculados/citología , Neuronas/fisiología , Olfato/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Neuronas Colinérgicas/metabolismo , Proteínas de Unión al ADN/genética , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Metamorfosis Biológica/fisiología , Cuerpos Pedunculados/embriología , Cuerpos Pedunculados/crecimiento & desarrollo , Neuronas/clasificación , Neuronas/citología , Neurotransmisores/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/embriología , Vías Olfatorias/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Olfato/genética , Factores de Transcripción/genética , Vías Visuales/citología
20.
Dev Biol ; 380(1): 12-24, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23665475

RESUMEN

The brain consists of various types of neurons that are generated from neural stem cells; however, the mechanisms underlying neuronal diversity remain uncertain. A recent study demonstrated that the medulla, the largest component of the Drosophila optic lobe, is a suitable model system for brain development because it shares structural features with the mammalian brain and consists of a moderate number and various types of neurons. The concentric zones in the medulla primordium that are characterized by the expression of four transcription factors, including Homothorax (Hth), Brain-specific homeobox (Bsh), Runt (Run) and Drifter (Drf), correspond to types of medulla neurons. Here, we examine the mechanisms that temporally determine the neuronal types in the medulla primordium. For this purpose, we searched for transcription factors that are transiently expressed in a subset of medulla neuroblasts (NBs, neuronal stem cell-like neural precursor cells) and identified five candidates (Hth, Klumpfuss (Klu), Eyeless (Ey), Sloppy paired (Slp) and Dichaete (D)). The results of genetic experiments at least explain the temporal transition of the transcription factor expression in NBs in the order of Ey, Slp and D. Our results also suggest that expression of Hth, Klu and Ey in NBs trigger the production of Hth/Bsh-, Run- and Drf-positive neurons, respectively. These results suggest that medulla neuron types are specified in a birth order-dependent manner by the action of temporal transcription factors that are sequentially expressed in NBs.


Asunto(s)
Encéfalo/embriología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Alelos , Animales , Diferenciación Celular , Cruzamientos Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Neuronas/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA