Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.338
1.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772653

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Cytochromes c , Fiber Optic Technology , Interferometry , Titanium , Cytochromes c/analysis , Cytochromes c/metabolism , Titanium/chemistry , Biosensing Techniques/methods , Limit of Detection , Optical Fibers , Corrosion
2.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732777

Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with conventional monitoring methods under the uncomfortable feelings generated since the skin and devices come into direct contact. This study introduces a non-invasive surveillance system that employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign readings. This system integrates a monitor based on the MZI (Mach-Zehnder interferometer) with LSTM networks, surpassing conventional approaches and providing potential uses in medical diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and intelligent health care.


Deep Learning , Optical Fibers , Vital Signs , Humans , Vital Signs/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Neural Networks, Computer
3.
Anal Methods ; 16(20): 3263-3270, 2024 May 23.
Article En | MEDLINE | ID: mdl-38738477

To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.


Optical Fibers , Oxidation-Reduction , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Animals , Wound Healing , Male , Mice
4.
Anal Chem ; 96(18): 6906-6913, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656893

Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.


Acrylic Resins , Chitosan , Optical Fibers , Surface Plasmon Resonance , Acrylic Resins/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Limit of Detection , Lipase/chemistry , Lipase/metabolism , Biosensing Techniques/methods
5.
Biosens Bioelectron ; 257: 116312, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38657380

Pre-eclampsia (PE) is a life-threatening complication that occurs during pregnancy, affecting a large number of pregnant women and newborns worldwide. Rapid, on-site and affordable screening of PE at an early stage is necessary to ensure timely treatment and minimize both maternal and neonatal morbidity and mortality rates. Placental growth factor (PlGF) is an angiogenic blood biomarker used for PE diagnosis. Herein, we report the plasmonic fiber optic absorbance biosensor (P-FAB) strategy for detecting PlGF at femtomolar concentration using polymethyl methacrylate (PMMA) based U-bent polymeric optical fiber (POF) sensor probes. A novel poly(amidoamine) (PAMAM) dendrimer based PMMA surface modification is established to obtain a greater immobilization of the bioreceptors compared to a linear molecule like hexamethylenediamine (HMDA). Plasmonic sandwich immunoassay was realized by immobilizing the mouse anti-PlGF (3H1) on the U-bent POF sensor probe surface and gold nanoparticles (AuNP) labels conjugated with mouse anti-PlGF (6H9). The POF sensor probes could measure PlGF within 30 min using the P-FAB strategy. The limit-of-detection (LoD) was found to be 0.19 pg/mL and 0.57 pg/mL in phosphate-buffered saline and 10× diluted serum, respectively. The clinical sample testing, with eleven positive and eleven negative preeclamptic pregnancy samples, successfully confirmed the accuracy, reliability, specificity, and sensitivity of the P-FAB based POF sensor platform, thereby paving the way for cost-effective technology for PlGF detection and its potential for pre-eclampsia diagnosis.


Biosensing Techniques , Dendrimers , Gold , Metal Nanoparticles , Optical Fibers , Placenta Growth Factor , Pre-Eclampsia , Pre-Eclampsia/diagnosis , Pre-Eclampsia/blood , Pregnancy , Female , Humans , Dendrimers/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Placenta Growth Factor/blood , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Fiber Optic Technology/instrumentation , Animals , Mice , Polymethyl Methacrylate/chemistry
6.
J Dent ; 145: 104998, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636650

OBJECTIVES: The study aimed to introduce a novel two-step optical fiber-based photo-activation of dental resin-based composites (RBCs) for reducing polymerization shrinkage stress (PSS). METHODS: Proposed protocol design - in the first step, two flexible plastic optical fibers connected to a dental light curing unit (LCU), were used as light guides inserted into the filling to initiate low-irradiance polymerization from within; in the second step, fibers were extracted and remaining voids were filled with RBC, followed by conventional high-irradiance curing to finalize polymerization. Three bulk-fill RBCs were tested (Beautifil-Bulk Restorative, Filtek Bulk-fill Posterior, Tetric PowerFill) using tooth cavity models. Three non-invasive examination techniques were employed: Digital Holographic Interferometry, Infrared Thermography, and Raman spectroscopy for monitoring model deformation, RBC temperature change, and degree of conversion (DC), respectively. A control group (for each examined RBC) underwent conventional photo-activation. RESULTS: The experimental protocol significantly reduced model deformation by 15 - 35 %, accompanied by an 18 - 54 % reduction in RBC temperature change, emphasizing the impact of thermal shrinkage on PSS. Real-time measurements of deformation and temperature provided indirect insights into reaction dynamics and illuminated potential mechanisms underlying PSS reduction. After a 24-hour dark-storage period, DC outcomes comparable to conventional curing were observed, affirming the clinical applicability of the method. CONCLUSIONS: Protocol involving the use of two 1.5 mm fibers in the first step (300 mW/cm2 x 10 s), followed by a second conventional curing step (1000 mW/cm2 x 10 s), is recommended to achieve the desired PSS reduction, while maintaining adequate DC and ensuring efficient clinical application. CLINICAL SIGNIFICANCE: Obtained PSS reduction offers promise in potentially improving the performance of composite restorations. Additionally, leveraging the flexibility of optical fibers improves light guide approach for restorations on posterior teeth. Meanwhile, implementation in clinical practice is easily achievable by coupling the fibers with commercial dental LCUs using the provided plastic adapter.


Composite Resins , Materials Testing , Optical Fibers , Polymerization , Composite Resins/chemistry , Composite Resins/radiation effects , Humans , Curing Lights, Dental , Dental Materials/chemistry , Dental Materials/radiation effects , Temperature , Spectrum Analysis, Raman , Light-Curing of Dental Adhesives/methods , Stress, Mechanical , Surface Properties
7.
J Biomed Opt ; 29(4): 046001, 2024 Apr.
Article En | MEDLINE | ID: mdl-38585417

Significance: Endoscopic screening for esophageal cancer (EC) may enable early cancer diagnosis and treatment. While optical microendoscopic technology has shown promise in improving specificity, the limited field of view (<1 mm) significantly reduces the ability to survey large areas efficiently in EC screening. Aim: To improve the efficiency of endoscopic screening, we propose a novel concept of end-expandable endoscopic optical fiber probe for larger field of visualization and for the first time evaluate a deep-learning-based image super-resolution (DL-SR) method to overcome the issue of limited sampling capability. Approach: To demonstrate feasibility of the end-expandable optical fiber probe, DL-SR was applied on simulated low-resolution microendoscopic images to generate super-resolved (SR) ones. Varying the degradation model of image data acquisition, we identified the optimal parameters for optical fiber probe prototyping. The proposed screening method was validated with a human pathology reading study. Results: For various degradation parameters considered, the DL-SR method demonstrated different levels of improvement of traditional measures of image quality. The endoscopists' interpretations of the SR images were comparable to those performed on the high-resolution ones. Conclusions: This work suggests avenues for development of DL-SR-enabled sparse image reconstruction to improve high-yield EC screening and similar clinical applications.


Barrett Esophagus , Deep Learning , Esophageal Neoplasms , Humans , Optical Fibers , Esophageal Neoplasms/diagnostic imaging , Barrett Esophagus/pathology , Image Processing, Computer-Assisted
8.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38556805

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Biosensing Techniques , Metal Nanoparticles , Quantum Dots , Zinc Oxide , Humans , Electrochemical Techniques , Cytokines , Interleukin-6 , Gold , Adsorption , Optical Fibers , Electrodes , Limit of Detection
9.
Opt Express ; 32(6): 10077-10092, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38571228

Every year, millions of people suffer some form of illness associated with the consumption of contaminated food. Escherichia coli (E. coli), found in the intestines of humans and other animals, is commonly associated with various diseases, due to the existence of pathogenic strains. Strict monitoring of food products for human consumption is essential to ensure public health, but traditional cell culture-based methods are associated with long waiting times and high costs. New approaches must be developed to achieve cheap, fast, and on-site monitoring. Thus, in this work, we developed optical fiber sensors based on surface plasmon resonance. Gold and cysteamine-coated fibers were functionalized with anti-E. coli antibody and tested using E. coli suspensions with concentrations ranging from 1 cell/mL to 105 cells/mL. An average logarithmic sensitivity of 0.21 ± 0.01 nm/log(cells/mL) was obtained for three independent assays. An additional assay revealed that including molybdenum disulfide resulted in an increase of approximately 50% in sensitivity. Specificity and selectivity were also evaluated, and the sensors were used to analyze contaminated water samples, which verified their promising applicability in the aquaculture field.


Biosensing Techniques , Surface Plasmon Resonance , Animals , Humans , Surface Plasmon Resonance/methods , Escherichia coli , Optical Fibers , Biosensing Techniques/methods , Immunoassay
10.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38626737

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Alzheimer Disease , Amyloid beta-Peptides , Biosensing Techniques , Early Diagnosis , Fiber Optic Technology , Peptide Fragments , Spectrum Analysis , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/analysis , Humans , Fiber Optic Technology/methods , Peptide Fragments/analysis , Biosensing Techniques/methods , Spectrum Analysis/methods , Optical Fibers , Biomarkers/analysis , Refractometry , Equipment Design
11.
Biosensors (Basel) ; 14(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38667166

Heart failure (HF) is a clinical entity included in cardiovascular diseases affecting millions of people worldwide, being a leading cause of hospitalization of older adults, and therefore imposing a substantial economic burden on healthcare systems. HF is characterized by dyspnea, fatigue, and edema associated with elevated blood levels of natriuretic peptides, such as N Terminal pro-B-type Natriuretic Peptide (NT-proBNP), for which there is a high demand for point of care testing (POCT) devices. Optical fiber (OF) biosensors offer a promising solution, capable of real-time detection, quantification, and monitoring of NT-proBNP concentrations in serum, saliva, or urine. In this study, immunosensors based on plasmonic uncladded OF tips were developed using OF with different core diameters (200 and 600 µm). The tips were characterized to bulk refractive index (RI), anddetection tests were conducted with NT-proBNP concentrations varying from 0.01 to 100 ng/mL. The 200 µm sensors showed an average total variation of 3.6 ± 2.5 mRIU, an average sensitivity of 50.5 mRIU/ng·mL-1, and a limit of detection (LOD) of 0.15 ng/mL, while the 600 µm sensors had a response of 6.1 ± 4.2 mRIU, a sensitivity of 102.8 mRIU/ng·mL-1, and an LOD of 0.11 ng/mL. Control tests were performed using interferents such as uric acid, glucose, and creatinine. The results show the potential of these sensors for their use in biological fluids.


Biosensing Techniques , Natriuretic Peptide, Brain , Optical Fibers , Peptide Fragments , Natriuretic Peptide, Brain/blood , Humans , Peptide Fragments/blood , Peptide Fragments/analysis , Heart Failure/diagnosis , Limit of Detection
12.
Sci Rep ; 14(1): 9446, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658694

To validate the feasibility of a fiber-optic pressure sensor-based pressure measurement device for monitoring intrarenal pressure and to analyze the effects of ureteral acess sheath (UAS) type, surgical location, perfusion flow rate, and measurement location on intrarenal pressure (IRP). The measurement deviations and response times to transient pressure changes were compared between a fiber-optic pressure sensing device and a urodynamic device IRP in an in vitro porcine kidney and in a water tank. Finally, pressure measurements were performed in anesthetized female pigs using fiber-optic pressure sensing device with different UAS, different perfusion flow rates, and different surgical positions at different renal calyces and ureteropelvic junctions (UPJ). According to our operation, the result is fiber optic pressure sensing devices are highly accurate and sensitive. Under the same conditions, IRP varied among different renal calyces and UPJ (P < 0.05). IRP was lowest at 50 ml/min and highest at 150 ml/min (P < 0.05). Surgical position had a significant effect on IRP (P < 0.05). 12/14 Fr UAS had a lower IRP than 11/13 Fr UAS. Therefore fiber optic pressure sensing devices are more advantageous for IRP measurements. In ureteroscopy, the type of ureteral sheath, the surgical position, the perfusion flow rate, and the location of the measurement all affect the intrarenal pressure value.


Fiber Optic Technology , Kidney , Pressure , Ureteroscopy , Animals , Fiber Optic Technology/instrumentation , Swine , Female , Kidney/physiology , Ureteroscopy/instrumentation , Ureteroscopy/methods , Optical Fibers , Urodynamics
13.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38544254

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Biosensing Techniques , Neoplasms , Humans , Biomarkers, Tumor , Biosensing Techniques/methods , Fiber Optic Technology/methods , Optical Fibers , Proteins , Neoplasms/diagnosis , Hyaluronan Receptors
14.
Biosens Bioelectron ; 254: 116189, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38507927

Plasmonic optical fiber-based biosensors are currently in their early stages of development as practical and integrated devices, gradually making their way towards the market. While the majority of these biosensors operate using white light and multimode optical fibers (OFs), our approach centers on single-mode OFs coupled with tilted fiber Bragg gratings (TFBGs) in the near-infrared wavelength range. Our objective is to enhance surface sensitivity and broaden sensing capabilities of OF-based sensors to develop in situ sensing with remote interrogation. In this study, we comprehensively assess their performance in comparison to the gold-standard plasmonic reference, a commercial device based on the Kretschmann-Raether prism configuration. We present their refractive index sensitivity and their capability for insulin sensing using a dedicated microfluidics approach. By optimizing a consistent surface biotrapping methodology, we elucidate the dynamic facets of both technologies and highlight their remarkable sensitivity to variations in bulk and surface properties. The one-to-one comparison between both technologies demonstrates the reliability of optical fiber-based measurements, showcasing similar experimental trends obtained with both the prismatic configuration and gold-coated TFBGs, with an even enhanced limit of detection for the latter. This study lays the foundation for the detection of punctual molecular interactions and opens the way towards the detection of spatially and temporally localized events on the surface of optical probes.


Biosensing Techniques , Optical Fibers , Biosensing Techniques/methods , Insulin , Benchmarking , Reproducibility of Results
15.
Biosens Bioelectron ; 254: 116232, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38520984

Healthcare system is undergoing a significant transformation from a traditional hospital-centered to an individual-centered one, as a result of escalating chronic diseases, ageing populations, and ever-increasing healthcare costs,. Wearable sensors have become widely used in health monitoring systems since the COVID-19 pandemic. They enable continuous measurement of important health indicators like body temperature, wrist pulse, respiration rate, and non-invasive bio fluids like saliva and perspiration. Over the last few decades, the development has mostly concentrated on electrochemical and electrical wearable sensors. However, due to the drawbacks of such sensors, such as electronic waste, electromagnetic interference, non-electrical security, and poor performance, researchers are exhibiting a strong interest in optical principle-based systems. Fiber-based optical wearables are among the most promising healthcare systems because of advancements in high-sensitivity, durable, multiplexed sensing, and simple integration with flexible materials to improve wearability and simplicity. We present an overview of recent developments in optical fiber-based wearable sensors, focusing on two mechanisms: wavelength interrogation and intensity modulation for the detection of body temperature, pulse rate, respiration rate, body movements, and biomedical noninvasive fluids, with a thorough examination of their benefits and drawbacks. This review also focuses on improving working performance and application techniques for healthcare systems, including the integration of nanomaterials and the usage of the Internet of Things (IoT) with signal processing. Finally, the review concludes with a discussion of the future possibilities and problems for optical fiber-based wearables.


Biosensing Techniques , Wearable Electronic Devices , Humans , Biosensing Techniques/methods , Optical Fibers , Pandemics , Monitoring, Physiologic/methods
16.
Biosens Bioelectron ; 255: 116237, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38537429

Scintillation-based fiber dosimeters are a powerful tool for minimally invasive localized real-time monitoring of the dose rate during Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy (BT). This paper presents the design, fabrication, and characterization of such dosimeters, consisting of scintillating sensor tips attached to polymer optical fiber (POF). The sensor tips consist of inorganic scintillators, i.e. Gd2O2S:Tb for LDR-BT, and Y2O3:Eu+4YVO4:Eu for HDR-BT, dispersed in a polymer host. The shape and size of the tips are optimized using non-sequential ray tracing simulations towards maximizing the collection and coupling of the scintillation signal into the POF. They are then manufactured by means of a custom moulding process implemented on a commercial hot embossing machine, paving the way towards series production. Dosimetry experiments in water phantoms show that both the HDR-BT and LDR-BT sensors feature good consistency in the magnitude of the average photon count rate and that the photon count rate signal is not significantly affected by variations in sensor tip composition and geometry. Whilst individual calibration remains necessary, the proposed dosimeters show great potential for in-vivo dosimetry for brachytherapy.


Biosensing Techniques , Brachytherapy , Radiation Dosimeters , Optical Fibers , Polymers
17.
Biosens Bioelectron ; 253: 116191, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38460209

To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 µM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.


Biosensing Techniques , Optical Fibers , Humans , Biosensing Techniques/methods , Glucose , Blood Glucose , Glucose Oxidase
18.
Adv Mater ; 36(21): e2312985, 2024 May.
Article En | MEDLINE | ID: mdl-38373270

Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.


Biomarkers , Biosensing Techniques , Optical Fibers , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis , Biomarkers/blood , Humans , Animals , Fungi , Limit of Detection , Fiber Optic Technology , Mycoses/diagnosis , Point-of-Care Testing , Mice
19.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38311846

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Anti-Bacterial Agents , Antifungal Agents , Optical Fibers , Microbial Sensitivity Tests , Candida albicans , Escherichia coli
20.
Anal Methods ; 16(11): 1659-1673, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38419435

In the fight against oral cancer, innovative methods like Raman spectroscopy and deep learning have become powerful tools, particularly in integral tasks encompassing tumor staging, lymph node staging, and histological grading. These aspects are essential for the development of effective treatment strategies and prognostic assessment. However, it is important to note that most research so far has focused on solutions to one of these problems and has not taken full advantage of the potential wealth of information in the data. To compensate for this shortfall, we conceived a method that combines Raman spectroscopy with deep learning for simultaneous processing of multiple classification tasks, including tumor staging, lymph node staging, and histological grading. To achieve this innovative approach, we collected 1750 Raman spectra from 70 tissue samples, including normal and cancerous tissue samples from 35 patients with oral cancer. In addition, we used a deep neural network architecture to design four distinct multi-task network (MTN) models for intelligent oral cancer diagnosis, named MTN-Alexnet, MTN-Googlenet, MTN-Resnet50, and MTN-Transformer. To determine their effectiveness, we compared these multitask models to each other and to single-task models and traditional machine learning methods. The preliminary experimental results show that our multi-task network model has good performance, among which MTN-Transformer performs best. Specifically, MTN-Transformer has an accuracy of 81.5%, a precision of 82.1%, a sensitivity of 80.2%, and an F1_score of 81.1% in terms of tumor staging. In the field of lymph node staging, the accuracy, precision, sensitivity, and F1_score of MTN-Transformer are 81.3%, 83.0%, 80.1%, and 81.5% respectively. Similarly, for the histological grading classification tasks, the accuracy was 83.0%, the precision 84.3%, the sensitivity 76.7%, and the F1_score 80.2%. This code is available at https://github.com/ISCLab-Bistu/MultiTask-OralRamanSystem.


Deep Learning , Mouth Neoplasms , Humans , Optical Fibers , Spectrum Analysis, Raman , Mouth Neoplasms/diagnosis , Diagnosis, Oral
...