Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Biol Open ; 10(2)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33563608

RESUMEN

The blastula Chordin- and Noggin-expressing (BCNE) center comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that only depends on nuclear ß-catenin activity but does not require Nodal and later segregates into its descendants during gastrulation. In contrast to previous findings, in this work, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage. We discuss our findings in Xenopus in comparison to other vertebrate models, uncovering similitudes in early brain induction and delimitation through Nodal signaling.


Asunto(s)
Blástula/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Biomarcadores , Blástula/citología , Desarrollo Embrionario/genética , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Organogénesis , Xenopus laevis
2.
J Cell Physiol ; 234(3): 1987-1995, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30317609

RESUMEN

Proper left-right (LR) axis establishment is critical for organogenesis in vertebrates. Previously, we reported that zinc finger transcription factors zinc finger transcription factor 1 (znfl1s) are expressed in the tailbud and axial mesoderm in zebrafish. However, a role of znfl1s in LR axis development has not been demonstrated. Here, we discovered that the knockdown of znfl1s using morpholino (MO) in whole embryos or dorsal forerunner cells (DFCs) interrupted LR asymmetry and normal development of the heart, liver, and pancreas. Whole-embryo knockdown of znfl1s by MO or clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) resulted in the absent expression of nodal gene spaw and Nodal signaling-related genes lft1, lft2, and pitx2c in the left lateral plate mesoderm (LPM), and Spaw, Lft1, Lft2, and Pitx2c play important roles in LR axis development in zebrafish. However, specific knockdown of znfl1s in DFCs resulted in random expression of spaw, lft1, lft2, and pitx2c. Knockdown of znfl1s led to abnormal cilia formation by the downregulation of fgfr1a and foxj1a expression. The expression of spaw, lft1, lft2, and pitx2c was partially rescued by the overexpression of fgfr1a mRNA in znfl1s morphants. Taken together, our results suggest that znfl1s regulate laterality development in zebrafish embryos through controlling the expression of fgfr1a.


Asunto(s)
Tipificación del Cuerpo/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Cilios/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
3.
Cells Tissues Organs ; 205(5-6): 256-278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30481762

RESUMEN

Existence and biomedical relevance of the neurenteric canal, a transient midline structure during early neurulation in the human embryo, have been controversially discussed for more than a century by embryologists and clinicians alike. In this study, the authors address the long-standing enigma by high-resolution histology and three-dimensional reconstruction using new and historic histological sections of 5 human 17- to 21-day-old embryos and of 2 marmoset monkey embryos of the species Callithrix jacchus at corresponding stages. The neurenteric canal presents itself as the classical vertical connection between the amniotic cavity and the yolk sac cavity and is lined (a) craniolaterally by a horseshoe-shaped "hinge of involuting notochordal cells" within Hensen's node and (b) caudally by the receding primitive streak epiblast dorsally and by notochordal plate epithelium ventrally, the latter of which covered the (longitudinal) notochordal canal on its ventral side at the preceding stage. Furthermore, asymmetric parachordal nodal expression in Callithrix and morphological asymmetries within the nodes of the other specimens suggest an early non-cilium-dependent left-right symmetry breaking mode previously postulated for other mammals. We conclude that structure and position of the mammalian neurenteric canal support the notion of its homology with the reptilian blastopore as a whole and with a dorsal segment of the blastopore in amphibia. These new features of the neurenteric canal may further clarify the aetiology of foetal malformations such as junctional neurulation defects, neuroendodermal cysts, and the split notochord syndrome.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/ultraestructura , Notocorda/embriología , Organizadores Embrionarios/embriología , Animales , Callithrix/embriología , Callithrix/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína Nodal/análisis , Proteína Nodal/genética , Notocorda/metabolismo , Notocorda/ultraestructura , Organizadores Embrionarios/metabolismo , Organizadores Embrionarios/ultraestructura
5.
Nature ; 558(7708): 132-135, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29795348

RESUMEN

In amniotes, the development of the primitive streak and its accompanying 'organizer' define the first stages of gastrulation. Although these structures have been characterized in detail in model organisms, the human primitive streak and organizer remain a mystery. When stimulated with BMP4, micropatterned colonies of human embryonic stem cells self-organize to generate early embryonic germ layers 1 . Here we show that, in the same type of colonies, Wnt signalling is sufficient to induce a primitive streak, and stimulation with Wnt and Activin is sufficient to induce an organizer, as characterized by embryo-like sharp boundary formation, markers of epithelial-to-mesenchymal transition and expression of the organizer-specific transcription factor GSC. Moreover, when grafted into chick embryos, human stem cell colonies treated with Wnt and Activin induce and contribute autonomously to a secondary axis while inducing a neural fate in the host. This fulfils the most stringent functional criteria for an organizer, and its discovery represents a milestone in human embryology.


Asunto(s)
Proteína Nodal/metabolismo , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Activinas/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Línea Celular , Embrión de Pollo , Transición Epitelial-Mesenquimal , Proteína Goosecoide/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Tejido Nervioso/citología , Tejido Nervioso/embriología , Tejido Nervioso/metabolismo , Organizadores Embrionarios/citología , Línea Primitiva/citología , Línea Primitiva/metabolismo
6.
Int J Dev Biol ; 62(1-2-3): 15-18, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616723

RESUMEN

This paper provides a brief account of some aspects of the career of Ruth Bellairs using selected examples from her research publications, with the emphasis being placed on the early stages of chick embryo development, and in particular, on cell migration. Topics include the role of Hensen's node, the vitelline membrane, the structure and segmentation of somites, the tail bud and the Wolffian duct. Her research approach has involved embryo culture, experimental surgery, transmission and scanning electron microscopy, time-lapse filming and immunostaining techniques.


Asunto(s)
Técnicas de Cultivo de Embriones , Embriología/historia , Inducción Embrionaria , Mesodermo/fisiología , Animales , Movimiento Celular , Embrión de Pollo , Pollos , Inglaterra , Historia del Siglo XX , Historia del Siglo XXI , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Organizadores Embrionarios/embriología
7.
Dev Biol ; 431(2): 282-296, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887017

RESUMEN

During development in metazoan embryos, the fundamental embryonic axes are established by organizing centers that influence the fates of nearby cells. Among the spiralians, a large and diverse branch of protostome metazoans, studies have shown that an organizer sets up the dorsal-ventral axis, which arises from one of the four basic cell quadrants during development (the dorsal, D quadrant). Studies in a few species have also revealed variation in terms of how and when the D quadrant and the organizer are established. In some species the D quadrant is specified conditionally, via cell-cell interactions, while in others it is specified autonomously, via asymmetric cell divisions (such as those involving the formation of polar lobes). The third quartet macromere (3D) typically serves as the spiralian organizer; however, other cells born earlier or later in the D quadrant lineage can serve as the organizer, such as the 2d micromere in the annelid Capitella teleta or the 4d micromere in the mollusc Crepidula fornicata. Here we present work carried out in the snail C. fornicata to show that establishment of a single D quadrant appears to rely on a combination of both autonomous (via inheritance of the polar lobe) and conditional mechanisms (involving induction via the progeny of the first quartet micromeres). Through systematic ablation of cells, we show that D quadrant identity is established between 5th and 6th cleavage stages, as it is in other spiralians that use conditional specification. Subsequently, following the next cell cycle, organizer activity takes place soon after the birth of the 4d micromere. Therefore, unlike the case in other spiralians that use conditional specification, the specification of the D quadrant and the activity of the dorso-ventral organizer are temporally and spatially uncoupled. We also present data on organizer function in naturally-occurring and experimentally-induced twin embryos, which possess multiple D quadrants. We show that supernumerary D quadrants can arise in C. fornicata (either spontaneously or following polar lobe removal); when multiple D quadrants are present these do not exhibit effective organizer activity. We conclude that the polar lobe is not required for D quadrant specification, though it could play a role in effective organizer activity. We also tested whether the inheritance of the small polar lobe by the D quadrant is associated with the ability to laterally inhibit neighboring quadrants by direct contact in order to normally prevent supernumerary organizers from arising. Finally, we discuss the variation of spiralian organizers in a phylogenetic context.


Asunto(s)
Organismos Acuáticos/citología , Organismos Acuáticos/crecimiento & desarrollo , Gastrópodos/citología , Gastrópodos/embriología , Organizadores Embrionarios/citología , Organizadores Embrionarios/embriología , Animales , Fase de Segmentación del Huevo/citología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Factores de Tiempo
8.
Stem Cells Dev ; 25(13): 986-94, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27171818

RESUMEN

LIM domain-binding protein 1 (Ldb1) is a nuclear cofactor that interacts with LIM homeodomain proteins to form multiprotein complexes that are important for transcription regulation. Ldb1 has been shown to play essential roles in various processes during mouse embryogenesis. To determine the role of Ldb1 in mid- and hindbrain development, we have generated a conditional mutant with a specific deletion of the Ldb1 in the Engrailed-1-expressing region of the developing mid- and hindbrain. Our study showed that the deletion impaired the expression of signaling molecules, such as fibroblast growth factor 8 (FGF8) and Wnt1, in the isthmic organizer and the expression of Shh in the ventral midbrain. The midbrain and the cerebellum were severely reduced in size, and the midbrain dopaminergic (mDA) neurons were missing in the mutant. These defects are identical to the phenotype that has been observed previously in mice with a deletion of the LIM homeodomain gene Lmx1b. Our results thus provide genetic evidence supporting that Ldb1 and Lmx1b function cooperatively to regulate mid- and hindbrain development. In addition, we found that mouse embryonic stem cells lacking Ldb1 failed to generate several types of differentiated neurons, including the mDA neurons, serotonergic neurons, cholinergic neurons, and olfactory bulb neurons, indicating an essential cell-autonomous role for Ldb1 in the development of these neurons.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas con Dominio LIM/metabolismo , Mesencéfalo/citología , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Cerebelo/embriología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/embriología , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación/genética
9.
Nat Commun ; 7: 11694, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27229764

RESUMEN

The startling capacity of the amphibian Spemann organizer to induce naïve cells to form a Siamese twin embryo with a second set of body axes is one of the hallmarks of developmental biology. However, the axis-inducing potential of the blastopore-associated tissue is commonly regarded as a chordate feature. Here we show that the blastopore lip of a non-bilaterian metazoan, the anthozoan cnidarian Nematostella vectensis, possesses the same capacity and uses the same molecular mechanism for inducing extra axes as chordates: Wnt/ß-catenin signaling. We also demonstrate that the establishment of the secondary, directive axis in Nematostella by BMP signaling is sensitive to an initial Wnt signal, but once established the directive axis becomes Wnt-independent. By combining molecular analysis with experimental embryology, we provide evidence that the emergence of the Wnt/ß-catenin driven blastopore-associated axial organizer predated the cnidarian-bilaterian split over 600 million years ago.


Asunto(s)
Tipificación del Cuerpo/genética , Gástrula/metabolismo , Organizadores Embrionarios/metabolismo , Anémonas de Mar/genética , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Gástrula/embriología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mutagénesis , Organizadores Embrionarios/embriología , Anémonas de Mar/embriología , Anémonas de Mar/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Cells Tissues Organs ; 201(2): 77-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26741372

RESUMEN

Nodal activity in the left lateral plate mesoderm is a conserved sign of irreversible left-right asymmetry at early somite stages of the vertebrate embryo. An earlier, paraxial nodal domain accompanies the emergence and initial extension of the notochord and is either left-sided, as in the chick and pig, or symmetrical, as in the mouse and rabbit; intriguingly, this interspecific dichotomy is mirrored by divergent morphological features of the posterior notochord (also known as the left-right organizer), which is ventrally exposed to the yolk sac cavity and carries motile cilia in the latter 2 species only. By introducing the cattle embryo as a new model organism for early left-right patterning, we present data to establish 2 groups of mammals characterized by both the morphology of the left-right organizer and the dynamics of paraxial nodal expression: presence and absence of a ventrally open surface of the early (plate-like) posterior notochord correlates with a symmetrical (in mice and rabbits) versus an asymmetrical (in pigs and cattle) paraxial nodal expression domain next to the notochordal plate. High-resolution histological analysis reveals that the latter domain defines in all 4 mammals a novel 'parachordal' axial mesoderm compartment, the topography of which changes according to the specific regression of the similarly novel subchordal mesoderm during the initial phases of notochord development. In conclusion, the mammalian axial mesoderm compartment (1) shares critical conserved features despite the marked differences in early notochord morphology and early left-right patterning and (2) provides a dynamic topographical framework for nodal activity as part of the mammalian left-right organizer.


Asunto(s)
Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteína Nodal/genética , Animales , Tipificación del Cuerpo , Bovinos , Pollos , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Gástrula/embriología , Gástrula/metabolismo , Gástrula/ultraestructura , Mesodermo/embriología , Mesodermo/metabolismo , Mesodermo/ultraestructura , Ratones , Proteína Nodal/análisis , Notocorda/embriología , Notocorda/metabolismo , Notocorda/ultraestructura , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Organizadores Embrionarios/ultraestructura , Conejos , Porcinos
11.
Morfologiia ; 148(4): 62-9, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26601476

RESUMEN

Most accurately, the prechordal plate (PCP) can be defined as the zone of close contact of cells of endodermal epithelium and mesenchyme in the region between the oropharyngeal membrane and the notochord. This structure is involved in the induction of the anterior parts of the brain and, in particular, the pituitary gland, as well as in the formation of some of eye muscles and bones of the skull base (chordal chondrocranium). Further studies are needed to clarify PCP involvement in the development of pharynx, esophagus, and their derivatives, as well as to determine the source and the mechanisms of development of PCP mesenchymal cells. The term "prechordal plate" should not be confused with the Spemann's organizer, head organizer, oropharyngeal membrane, mesendoderm, head process and the prechordal mesoderm, which is common in the scientific literature. The term "myoepicardial plate" falsely indicates the common origin of myocardium and epicardium, thus its usage should be avoided.


Asunto(s)
Notocorda/embriología , Pericardio/embriología , Terminología como Asunto , Animales , Endodermo/embriología , Humanos , Organizadores Embrionarios/embriología
12.
Dev Biol ; 403(1): 89-100, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25912688

RESUMEN

The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/ß-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Organizadores Embrionarios/embriología , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Dedos de Zinc/genética , Animales , Blástula/metabolismo , Gastrulación/genética , Técnicas de Silenciamiento del Gen , Proteína Goosecoide/biosíntesis , Proteínas de Homeodominio/biosíntesis , Mesodermo/embriología , Morfolinos/genética , Proteínas Inhibidoras de STAT Activados/genética , ARN Mensajero/biosíntesis , Proteínas Represoras/biosíntesis , Transactivadores/genética , Factores de Transcripción/biosíntesis , Transcripción Genética/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
13.
Dev Growth Differ ; 57(3): 218-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25754292

RESUMEN

The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid- to late-gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor contributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to establish the physical contact with the prospective neuroectoderm through the "subduction and zippering" movements. Subduction makes a trench between the anterior organizer and the prospective neuroectoderm, and the tissues face each other via the trench. Zippering movement, with forming Brachet's cleft, gradually closes the gap to establish the contact between them. The contact is completed at the equator of early gastrulae and it continues throughout the gastrulation. After the contact is established, the dorsal axis is formed posteriorly, but not anteriorly. The model also implies the possibility of constructing a common model of gastrulation among chordate species.


Asunto(s)
Anfibios/embriología , Tipificación del Cuerpo/fisiología , Gástrula/embriología , Modelos Biológicos , Placa Neural/embriología , Organizadores Embrionarios/embriología , Animales , Hibridación in Situ , Imagen de Lapso de Tiempo
14.
Dev Biol ; 397(2): 212-24, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25478908

RESUMEN

The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.


Asunto(s)
Ligandos de Señalización Nodal/metabolismo , Organizadores Embrionarios/embriología , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Unión al GTP rab5/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Microscopía Electrónica , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab5/genética
15.
Int J Dev Biol ; 58(5): 355-362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25354456

RESUMEN

Tiki1 is a Wnt protease and antagonist specifically expressed in the Spemann-Mangold Organizer and is required for head formation in Xenopus embryos. Here we report neighbor-joining phylogenetic analysis of vertebrate Tiki genes and their mRNA expression patterns in chick, mouse, and rabbit embryos. Tiki1 and Tiki2 orthologues are highly conserved, and exhibit similar but also different developmental expression patterns among the vertebrate/mammalian species analyzed. The Tiki1 gene is noticeably absent in the rodent lineage, but is present in lagomorphs and all other vertebrate/mammalian species examined. Expression in Hensen's node, the equivalent of the Xenopus Organizer, was observed for Chick Tiki2 and Rabbit Tiki1 and Tiki2. Mouse Tiki2 was detected at low levels at gastrulation and head fold stages, but not in the node. Mouse Tiki2 and chick Tiki1 display similar expression in the dorsal spinal cord. Chick Tiki1 expression was also detected in the surface ectoderm and maxillary bud, while chick Tiki2 was found in the anterior intestinal portal, head mesenchyme and primitive atrium. Our expression analyses provide evidence that Tiki1 and Tiki2 are evolutionarily conserved among vertebrate species and their expression in the Organizer and other regions suggests contributions of these Wnt inhibitors to embryonic patterning, as well as organogenesis. Our analyses further reveal mis-regulation of TIKI1 and TIKI2 in human cancer and diseases.


Asunto(s)
Tipificación del Cuerpo/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Metaloproteasas/genética , Filogenia , Animales , Embrión de Pollo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas , Metaloproteasas/metabolismo , Ratones , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Conejos
16.
Dev Cell ; 30(3): 353-60, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25117685

RESUMEN

The stereotypic left-right (LR) asymmetric distribution of internal organs is due to an asymmetric molecular cascade in the lateral plate mesoderm (LPM) that is originated at the embryonic node. In chicken embryos, molecular asymmetries at Hensen's node are created by leftward cell movements that occur transiently. What terminates these movements, and, moreover, what is the impact of prolonging them on the LR asymmetry cascade? We show that leftward movements last longer when N-cadherin function is blocked and cease prematurely when N-cadherin is overexpressed on the right side of the node. The prolonged leftward movements lead to loss of asymmetric expression of fgf8 and nodal at the node region. This originates an abnormal expression of the asymmetric genes cer1 and snai1 in the LPM, resulting in mispositioned hearts. We conclude that N-cadherin stops the leftward cell movements and that this termination is an essential step in the establishment of LR asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Cadherinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Organizadores Embrionarios/embriología , Animales , Embrión de Pollo , Femenino , Corazón/embriología , Proteínas Hedgehog/metabolismo , Mesodermo/metabolismo , Transducción de Señal/genética
17.
Development ; 141(14): 2855-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948604

RESUMEN

The cortical hem, a source of Wingless-related (WNT) and bone morphogenetic protein (BMP) signaling in the dorsomedial telencephalon, is the embryonic organizer for the hippocampus. Whether the hem is a major regulator of cortical patterning outside the hippocampus has not been investigated. We examined regional organization across the entire cerebral cortex in mice genetically engineered to lack the hem. Indicating that the hem regulates dorsoventral patterning in the cortical hemisphere, the neocortex, particularly dorsomedial neocortex, was reduced in size in late-stage hem-ablated embryos, whereas cortex ventrolateral to the neocortex expanded dorsally. Unexpectedly, hem ablation also perturbed regional patterning along the rostrocaudal axis of neocortex. Rostral neocortical domains identified by characteristic gene expression were expanded, and caudal domains diminished. A similar shift occurs when fibroblast growth factor (FGF) 8 is increased at the rostral telencephalic organizer, yet the FGF8 source was unchanged in hem-ablated brains. Rather we found that hem WNT or BMP signals, or both, have opposite effects to those of FGF8 in regulating transcription factors that control the size and position of neocortical areas. When the hem is ablated a necessary balance is perturbed, and cerebral cortex is rostralized. Our findings reveal a much broader role for the hem in cortical development than previously recognized, and emphasize that two major signaling centers interact antagonistically to pattern cerebral cortex.


Asunto(s)
Tipificación del Cuerpo/genética , Neocórtex/embriología , Neocórtex/metabolismo , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neocórtex/citología , Tamaño de los Órganos , Organizadores Embrionarios/citología , Fenotipo , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Proteínas Wnt/metabolismo
18.
BMC Biol ; 12: 13, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24528677

RESUMEN

BACKGROUND: The habenula and the thalamus are two critical nodes in the forebrain circuitry and they connect the midbrain and the cerebral cortex in vertebrates. The habenula is derived from the epithalamus and rests dorsally to the thalamus. Both epithalamus and thalamus arise from a single diencephalon segment called prosomere (p)2. Shh is expressed in the ventral midline of the neural tube and in the mid-diencephalic organizer (MDO) at the zona limitans intrathalamica between thalamus and prethalamus. Acting as a morphogen, Shh plays an important role in regulating cell proliferation and survival in the diencephalon and thalamic patterning. The molecular regulation of the MDO Shh expression and the potential role of Shh in development of the habenula remain largely unclear. RESULTS: We show that deleting paired-box and homeobox-containing gene Pax6 results in precocious and expanded expression of Shh in the prospective MDO in fish and mice, whereas gain-of-function of pax6 inhibits MDO shh expression in fish. Using gene expression and genetic fate mapping, we have characterized the expression of molecular markers that demarcate the progenitors and precursors of habenular neurons. We show that the thalamic domain is shifted dorsally and the epithalamus is missing in the alar plate of p2 in the Pax6 mutant mouse. Conversely, the epithalamus is expanded ventrally at the expense of the thalamus in mouse embryos with reduced Shh activity. Significantly, attenuating Shh signaling largely rescues the patterning of p2 and restores the epithalamus in Pax6 mouse mutants, suggesting that Shh acts downstream of Pax6 in controlling the formation of the habenula. Similar to that found in the mouse, we show that pax6 controls the formation of the epithalamus mostly via the regulation of MDO shh expression in zebrafish. CONCLUSIONS: Our findings demonstrate that Pax6 has an evolutionarily conserved function in establishing the temporospatial expression of Shh in the MDO in vertebrates. Furthermore, Shh mediates Pax6 function in regulating the partition of the p2 domain into the epithalamus and thalamus.


Asunto(s)
Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Habénula/embriología , Habénula/metabolismo , Proteínas Hedgehog/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Vertebrados/embriología , Proteínas de Pez Cebra/genética , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Habénula/citología , Proteínas Hedgehog/metabolismo , Ratones , Organizadores Embrionarios/citología , Organizadores Embrionarios/embriología , Factor de Transcripción PAX6 , Unión Proteica , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Tálamo/citología , Tálamo/embriología , Factores de Transcripción/metabolismo , Vertebrados/genética , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
19.
Development ; 141(2): 377-88, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24335253

RESUMEN

During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity. Here, we investigated whether Otx2 is cell-autonomously required to control identity and fate of dorsal mesencephalic progenitors. With this aim, we have inactivated Otx2 in the Pax7(+) dorsal mesencephalic domain, previously named m1, without affecting MHB integrity. We found that the Pax7(+) m1 domain can be further subdivided into a dorsal Zic1(+) m1a and a ventral Zic1(-) m1b sub-domain. Loss of Otx2 in the m1a (Pax7(+) Zic1(+)) sub-domain impairs the identity and fate of progenitors, which undergo a full switch into a coordinated cerebellum differentiation program. By contrast, in the m1b sub-domain (Pax7(+) Zic1(-)) Otx2 is prevalently required for post-mitotic transition of mesencephalic GABAergic precursors. Moreover, genetic cell fate, BrdU cell labeling and Otx2 conditional inactivation experiments indicate that in Otx2 mutants all ectopic cerebellar cell types, including external granule cell layer (EGL) precursors, originate from the m1a progenitor sub-domain and that reprogramming of mesencephalic precursors into EGL or cerebellar GABAergic progenitors depends on temporal sensitivity to Otx2 ablation. Together, these findings indicate that Otx2 intrinsically controls different aspects of dorsal mesencephalic neurogenesis. In this context, Otx2 is cell-autonomously required in the m1a sub-domain to suppress cerebellar fate and promote mesencephalic differentiation independently of the MHB organizing activity.


Asunto(s)
Cerebelo/embriología , Cerebelo/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Factores de Transcripción Otx/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Factor de Transcripción PAX7/metabolismo , Embarazo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(51): 20372-9, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24284174

RESUMEN

The vertebrate body plan follows stereotypical dorsal-ventral (D-V) tissue differentiation controlled by bone morphogenetic proteins (BMPs) and secreted BMP antagonists, such as Chordin. The three germ layers--ectoderm, mesoderm, and endoderm--are affected coordinately by the Chordin-BMP morphogen system. However, extracellular morphogen gradients of endogenous proteins have not been directly visualized in vertebrate embryos to date. In this study, we improved immunolocalization methods in Xenopus embryos and analyzed the distribution of endogenous Chordin using a specific antibody. Chordin protein secreted by the dorsal Spemann organizer was found to diffuse along a narrow region that separates the ectoderm from the anterior endoderm and mesoderm. This Fibronectin-rich extracellular matrix is called "Brachet's cleft" in the Xenopus gastrula and is present in all vertebrate embryos. Chordin protein formed a smooth gradient that encircled the embryo, reaching the ventral-most Brachet cleft. Depletion with morpholino oligos showed that this extracellular gradient was regulated by the Chordin protease Tolloid and its inhibitor Sizzled. The Chordin gradient, as well as the BMP signaling gradient, was self-regulating and, importantly, was able to rescale in dorsal half-embryos. Transplantation of Spemann organizer tissue showed that Chordin diffused over long distances along this signaling highway between the ectoderm and mesoderm. Chordin protein must reach very high concentrations in this narrow region. We suggest that as ectoderm and mesoderm undergo morphogenetic movements during gastrulation, cells in both germ layers read their positional information coordinately from a single morphogen gradient located in Brachet's cleft.


Asunto(s)
Ectodermo/embriología , Gástrula/embriología , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/embriología , Transducción de Señal/fisiología , Animales , Ectodermo/citología , Gástrula/citología , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/citología , Morfolinos/farmacología , Organizadores Embrionarios/citología , Organizadores Embrionarios/embriología , Transducción de Señal/efectos de los fármacos , Metaloproteinasas Similares a Tolloid/genética , Metaloproteinasas Similares a Tolloid/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...