Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Bone ; 186: 117174, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917962

RESUMEN

Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.


Asunto(s)
Ligamento Amarillo , Osificación del Ligamento Longitudinal Posterior , Estenosis Espinal , Regulación hacia Arriba , Humanos , Estenosis Espinal/patología , Estenosis Espinal/genética , Estenosis Espinal/metabolismo , Regulación hacia Arriba/genética , Ligamento Amarillo/patología , Ligamento Amarillo/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/patología , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osteogénesis/genética , Diferenciación Celular/genética , Ligamentos Longitudinales/patología , Ligamentos Longitudinales/metabolismo , Masculino
2.
Bone Res ; 12(1): 24, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594260

RESUMEN

Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.


Asunto(s)
Ligamentos Longitudinales , Osificación del Ligamento Longitudinal Posterior , Animales , Ligamentos Longitudinales/metabolismo , Osteogénesis/genética , Sorafenib/farmacología , Osificación del Ligamento Longitudinal Posterior/genética , Diferenciación Celular
3.
Curr Osteoporos Rep ; 21(5): 552-566, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37530996

RESUMEN

PURPOSE OF REVIEW: The study aims to provide updated information on the genetic factors associated with the diagnoses 'Diffuse Idiopathic Skeletal Hyperostosis' (DISH), 'Ossification of the Posterior Longitudinal Ligament' (OPLL), and in patients with spinal ligament ossification. RECENT FINDINGS: Recent studies have advanced our knowledge of genetic factors associated with DISH, OPLL, and other spinal ossification (ossification of the anterior longitudinal ligament [OALL] and the yellow ligament [OYL]). Several case studies of individuals afflicted with monogenic disorders, such as X-linked hypophosphatemia (XLH), demonstrate the strong association of fibroblast growth factor 23-related hypophosphatemia with OPLL, suggesting that pathogenic variants in PHEX, ENPP1, and DMP1 are associated with FGF23-phosphate wasting phenotype and strong genetic factors placing patients at risk for OPLL. Moreover, emerging evidence demonstrates that heterozygous and compound heterozygous ENPP1 pathogenic variants inducing 'Autosomal Recessive Hypophosphatemic Rickets Type 2' (ARHR2) also place patients at risk for DISH and OPLL, possibly due to the loss of inhibitory plasma pyrophosphate (PPi) which suppresses ectopic calcification and enthesis mineralization. Our findings emphasize the importance of genetic and plasma biomarker screening in the clinical evaluation of DISH and OPLL patients, with plasma PPi constituting an important new biomarker for the identification of DISH and OPLL patients whose disease course may be responsive to ENPP1 enzyme therapy, now in clinical trials for rare calcification disorders.


Asunto(s)
Hiperostosis Esquelética Difusa Idiopática , Osificación del Ligamento Longitudinal Posterior , Humanos , Hiperostosis Esquelética Difusa Idiopática/genética , Hiperostosis Esquelética Difusa Idiopática/complicaciones , Osteogénesis/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/complicaciones , Biomarcadores , Ligamentos
4.
Elife ; 122023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37461309

RESUMEN

Ossification of the posterior longitudinal ligament of the spine (OPLL) is an intractable disease leading to severe neurological deficits. Its etiology and pathogenesis are primarily unknown. The relationship between OPLL and comorbidities, especially type 2 diabetes (T2D) and high body mass index (BMI), has been the focus of attention; however, no trait has been proven to have a causal relationship. We conducted a meta-analysis of genome-wide association studies (GWASs) using 22,016 Japanese individuals and identified 14 significant loci, 8 of which were previously unreported. We then conducted a gene-based association analysis and a transcriptome-wide Mendelian randomization approach and identified three candidate genes for each. Partitioning heritability enrichment analyses observed significant enrichment of the polygenic signals in the active enhancers of the connective/bone cell group, especially H3K27ac in chondrogenic differentiation cells, as well as the immune/hematopoietic cell group. Single-cell RNA sequencing of Achilles tendon cells from a mouse Achilles tendon ossification model confirmed the expression of genes in GWAS and post-GWAS analyses in mesenchymal and immune cells. Genetic correlations with 96 complex traits showed positive correlations with T2D and BMI and a negative correlation with cerebral aneurysm. Mendelian randomization analysis demonstrated a significant causal effect of increased BMI and high bone mineral density on OPLL. We evaluated the clinical images in detail and classified OPLL into cervical, thoracic, and the other types. GWAS subanalyses identified subtype-specific signals. A polygenic risk score for BMI demonstrated that the effect of BMI was particularly strong in thoracic OPLL. Our study provides genetic insight into the etiology and pathogenesis of OPLL and is expected to serve as a basis for future treatment development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osificación del Ligamento Longitudinal Posterior , Animales , Ratones , Osteogénesis , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/patología , Columna Vertebral/patología , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/patología
5.
Am J Hum Genet ; 110(4): 638-647, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990086

RESUMEN

Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common intractable disease that causes spinal stenosis and myelopathy. We have previously conducted genome-wide association studies for OPLL and identified 14 significant loci, but their biological implications remain mostly unclear. Here, we examined the 12p11.22 locus and identified a variant in the 5' UTR of a novel isoform of CCDC91 that was associated with OPLL. Using machine learning prediction models, we determined that higher expression of the novel CCDC91 isoform was associated with the G allele of rs35098487. The risk allele of rs35098487 showed higher affinity in the binding of nuclear proteins and transcription activity. Knockdown and overexpression of the CCDC91 isoform in mesenchymal stem cells and MG-63 cells showed paralleled expression of osteogenic genes, including RUNX2, the master transcription factor of osteogenic differentiation. The CCDC91 isoform directly interacted with MIR890, which bound to RUNX2 and decreased RUNX2 expression. Our findings suggest that the CCDC91 isoform acts as a competitive endogenous RNA by sponging MIR890 to increase RUNX2 expression.


Asunto(s)
Osificación del Ligamento Longitudinal Posterior , Osteogénesis , Humanos , Osteogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Estudio de Asociación del Genoma Completo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , ARN no Traducido
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769191

RESUMEN

Primary spinal ligament-derived cells (SLDCs) from cervical herniated nucleus pulposus tissue (control, Ctrl) and ossification of the posterior longitudinal ligament (OPLL) tissue of surgical patients were analyzed for pathogenesis elucidation. Here, we found that decreased levels of ferritin and increased levels of alkaline phosphatase (ALP), a bone formation marker, provoked osteogenesis in SLDCs in OPLL. SLDCs from the Ctrl and OPLL groups satisfied the definition of mesenchymal stem/stromal cells. RNA sequencing revealed that oxidative phosphorylation and the citric acid cycle pathway were upregulated in the OPLL group. SLDCs in the OPLL group showed increased mitochondrial mass, increased mitochondrial reactive oxygen species (ROS) production, decreased levels of ROS scavengers including ferritin. ROS and ferritin levels were upregulated and downregulated in a time-dependent manner, and both types of molecules repressed ALP. Osteogenesis was mitigated by apoferritin addition. We propose that enhancing ferritin levels might alleviate osteogenesis in OPLL.


Asunto(s)
Ligamentos Longitudinales , Osificación del Ligamento Longitudinal Posterior , Humanos , Ligamentos Longitudinales/metabolismo , Ligamentos Longitudinales/patología , Osteogénesis/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/patología , Especies Reactivas de Oxígeno/metabolismo , Ferritinas/genética , Ferritinas/metabolismo
7.
Cell Tissue Res ; 391(1): 145-157, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305971

RESUMEN

Interleukin-6 (IL-6) has been reported to induce osteogenic differentiation of mesenchymal stem cells for increasing bone regeneration, while the role of IL-6 in osteogenic differentiation during ossification of the posterior longitudinal ligament (OPLL) remains to be determined. The current study aims to explore the downstream mechanism of IL-6 in cyclic tensile strain (CTS)-stimulated OPLL, which involves bioinformatically identified microRNA-135b (miR-135b). Initially, we clinically collected posterior longitudinal ligament (PLL) and ossified PLL tissues, from which ossified PLL cells were isolated, respectively. The obtained data revealed a greater osteogenic property of ossified PLL than non-ossified PLL cells. The effect of regulatory axis comprising IL-6, Stat3, miR-135b, and BMPER on osteogenic differentiation of CTS-stimulated ossified PLL cells was examined with gain- and loss-of-function experiments. BMPER was confirmed as a target gene to miR-135b. Knockdown of BMPER or overexpression of miR-135b inhibited the osteogenic differentiation of CTS-induced ossification in PLL cells. Besides, IL-6 promoted the post-transcriptional process to mature miR-135b via Stat3 phosphorylation. In conclusion, IL-6 inhibited CTS-induced osteogenic differentiation by inducing miR-135b-mediated inhibition of BMPER through Stat3 activation.


Asunto(s)
Interleucina-6 , MicroARNs , Osificación del Ligamento Longitudinal Posterior , Factor de Transcripción STAT3 , Humanos , Proteínas Portadoras , Diferenciación Celular/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ligamentos Longitudinales , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osteogénesis/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
8.
J Nanobiotechnology ; 20(1): 452, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243800

RESUMEN

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL) is a disabling disease whose pathogenesis is still unclear, and there are no effective cures or prevention methods. Exosomal miRNA plays an important role in the osteogenesis of ectopic bone. Therefore, we focused on the downregulation of miR-140-5p in OPLL cell-derived exosomes to explore the mechanism by which exosomal miR-140-5p inhibits osteogenesis in OPLL. RESULTS: Exosomes were isolated by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and exosomal markers. Exosomal RNA was extracted to perform miRNA sequencing and disclose the differentially expressed miRNAs, among which miR-140-5p was significantly downregulated. Confocal microscopy was used to trace the exosomal miR-140-5p delivered from OPLL cells to human mesenchymal stem cells (hMSCs). In vitro, we verified that exosomal miR-140-5p inhibited the osteoblast differentiation of hMSCs by targeting IGF1R and suppressing the phosphorylation of the IRS1/PI3K/Akt/mTOR pathway. In vivo, we verified that exosomal miR-140-5p inhibited ectopic bone formation in mice as assessed by micro-CT and immunohistochemistry. CONCLUSIONS: We found that exosomal miR-140-5p could inhibit the osteogenic differentiation of hMSCs by targeting IGF1R and regulating the mTOR pathway, prompting a further potential means of drug treatment and a possible target for molecular therapy of OPLL.


Asunto(s)
MicroARNs , Osificación del Ligamento Longitudinal Posterior , Animales , Humanos , Ligamentos Longitudinales/metabolismo , Ligamentos Longitudinales/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/patología , Osteogénesis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptor IGF Tipo 1 , Serina-Treonina Quinasas TOR/genética
9.
Nat Commun ; 13(1): 2467, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513391

RESUMEN

Ossification of the posterior longitudinal ligament (OPLL) is an emerging spinal disease caused by heterotopic ossification of the posterior longitudinal ligament. The pathological mechanism is poorly understood, which hinders the development of nonsurgical treatments. Here, we set out to explore the function and mechanism of small extracellular vesicles (sEVs) in OPLL. Global miRNA sequencings are performed on sEVs derived from ligament cells of normal and OPLL patients, and we have showed that miR-320e is abundantly expressed in OPLL-derived sEVs compare to other sEVs. Treatment with either sEVs or miR-320e significantly promote the osteoblastic differentiation of normal longitudinal ligament cells and mesenchymal stem cells and inhibit the osteoclastic differentiation of monocytes. Through a mechanistic study, we find that TAK1 is a downstream target of miR-320e, and we further validate these findings in vivo using OPLL model mice. Together, our data demonstrate that OPLL ligament cells secrete ossification-promoting sEVs that contribute to the development of ossification through the miR-320e/TAK1 axis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Osificación del Ligamento Longitudinal Posterior , Animales , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Humanos , Ligamentos Longitudinales/patología , Quinasas Quinasa Quinasa PAM , Ratones , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/patología , Osteogénesis/genética
10.
Oxid Med Cell Longev ; 2022: 1604932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391932

RESUMEN

Connexin 43- (Cx43-) mediated nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling has been found involved in the ossification of the posterior longitudinal ligament (OPLL). However, the underlying mechanism how OPLL is regulated has not been elucidated. In the present study, primary ligament fibroblast were isolated; immunoprecipitation (IP) and liquid chromatography-mass spectrometry (LC-MS) assays were applied to identify potential binding proteins of Cx43. Protein interaction was then confirmed by co-IP assay. Alkaline phosphatase (ALP) activity and alizarin red staining were used to evaluate ossification. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to assess the binding between NF-κB p65 and target gene. Lipoxygenase inhibitor (5,8,11-eicosatriynoic acid, EPA) was applied to induce endoplasmic reticulum (ER) stress, and 4-phenylbutyrate (4-PBA) was used as an ER-stress inhibitor. Expression of USP9X, Cx43, and nuclei p65 in ligaments from patients and controls was detected by Western blotting. The results showed that ubiquitin-specific protease 9 X-chromosome (USP9X), a deubiquitylating enzyme, was a candidate of Cx43 binding proteins, and USP9X inhibited Cx43 ubiquitination. In vitro experiments showed that USP9X promoted ossification of primary ligament fibroblasts and nuclear translocation of NF-κB p65 by regulating Cx43 expression. Moreover, NF-κB can bind to the USP9X promoter to promote its transcription. When ER stress was inhibited by 4-PBA, USP9X levels, NF-κB nuclei translocation, and ALP activity were decreased. Reverse results were obtained when ER stress was induced by EPA. PDTC, an NF-κB inhibitor, could abolish the effects of EPA. Furthermore, USP9X, Cx43, and nuclei p65 were significantly upregulated in ligaments from OPLL patients than non-OPLL controls. USP9X was positively correlated with CX43 and nuclei p65 in OPLL samples. Overall, the findings suggest that the ER stress-NFκB-USP9X-Cx43 signaling pathway plays an important role in OPLL progression.


Asunto(s)
Conexina 43 , Osificación del Ligamento Longitudinal Posterior , Factor de Transcripción ReIA , Ubiquitina Tiolesterasa , Células Cultivadas , Vértebras Cervicales/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Humanos , Ligamentos Longitudinales/metabolismo , FN-kappa B/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osteogénesis/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
11.
Aging (Albany NY) ; 13(16): 20192-20217, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34483137

RESUMEN

Ossification of the posterior longitudinal ligament (OPLL) is a disorder with multiple pathogenic mechanisms and leads to different degrees of neurological symptoms. Recent studies have revealed that non-coding RNA (ncRNA), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), could influence the development of OPLL. Nevertheless, the molecular mechanisms linking circular RNAs (circRNAs) and the progression of OPLL is still unknown. The current research explored the expression profiles of OPLL-related circRNAs by microarray analysis, and applied qRT-PCR to validate the results. Subsequently, we confirmed the upregulation of hsa_circ_0007292 in OPLL cells by qRT-PCR and validated the circular characteristic of hsa_circ_0007292 by Sanger sequencing. Fluorescence in situ hybridization (FISH) unveiled that hsa_circ_0007292 was predominantly located in the cytoplasm. Functionally, gain-of-function and loss-of-function experiments showed that hsa_circ_0007292 promoted the osteogenic differentiation of OPLL cells. Mechanistically, the interaction of hsa_circ_0007292 and miR-508-3p was predicted and validated by bioinformatics analysis, dual-luciferase reporter assays, and Ago2 RNA immunoprecipitation (RIP). Similarly, we validated the correlation between miR-508-3p and SATB2. Furthermore, rescue experiments were performed to prove that hsa_circ_0007292 acted as a sponge for miR-508-3p, and SATB2 was revealed to be the target gene of miR-508-3p. In conclusion, our research shows that hsa_circ_0007292 regulates OPLL progression by the miR-508-3p/SATB2 pathway. Our results indicate that hsa_circ_0007292 can be used as a promising therapeutic target for patients with OPLL.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , MicroARNs/metabolismo , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osteogénesis , ARN Circular/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular , Humanos , Ligamentos Longitudinales/citología , Ligamentos Longitudinales/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/fisiopatología , ARN Circular/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
12.
Spine J ; 21(11): 1847-1856, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273568

RESUMEN

BACKGROUND CONTEXT: Ossification of the posterior longitudinal ligament (OPLL) in the cervical spine is known as a rare, complex genetic disease, its complexity being partly because OPLL is diagnosed by radiological findings regardless of clinical or genetic evaluations. Although many genes associated with susceptibility have been reported, the exact causative genes are still unknown. PURPOSE: We performed an analysis using next-generation sequencing and including only patients with a clear involved phenotype. STUDY DESIGN/SETTING: This was a case control study. PATIENT SAMPLE: A total of 74 patients with severe OPLL and 26 healthy controls were included. OUTCOME MEASURES: Causal single-nucleotide variant (SNV), gene-wise variant burden (GVB), and related pathway METHOD: We consecutively included the severe OPLL patients with continuous-/mixed-type and an occupying ratio of ≥ 40%, and performed whole-exome sequencing (WES) and bioinformatic analysis. Then, a validation test was performed for candidate variations. Participants were divided into 4 groups (rapidly-growing OPLL, growing rate ≥ 2.5%/y; slow-growing, < 2.5%/y; uncertain; and control). RESULTS: WES was performed on samples from 74 patients with OPLL (rapidly-growing, 33 patients; slow-growing, 37; and uncertain, 4) with 26 healthy controls. Analysis of 100 participants identified a newly implicated SNV and 4candidate genes based on GVB. The GVB of CYP4B1 showed a more deleterious score in the OPLL than the control group. Comparison between the rapidly growing OPLL and control groups revealed seven newly identified SNVs. We found significant association for 2 rare missense variants; rs121502220 (odds ratio [OR] = infinite; minor allele frequency [MAF] = 0.034) in NLRP1 and rs13980628 (OR= infinite; MAF = 0.032) in SSH2. The 3 genes are associated with inflammation control and arthritis, and SSH2 and NLRP1 are also related to vitamin D modulation. CONCLUSIONS: Identification of unique variants in novel genes such as CYP4B1 gene may induce the development of OPLL. In subgroup analysis, NLRP1 and SSH2 genes coding inflammation molecules may related with rapidly-growing OPLL.


Asunto(s)
Ligamentos Longitudinales , Osificación del Ligamento Longitudinal Posterior , Estudios de Casos y Controles , Vértebras Cervicales , Biología Computacional , Variación Genética , Humanos , Osificación del Ligamento Longitudinal Posterior/diagnóstico por imagen , Osificación del Ligamento Longitudinal Posterior/genética , Osteogénesis , Secuenciación del Exoma
13.
Life Sci ; 279: 119481, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857573

RESUMEN

AIMS: Muscle and adipose tissue-derived mesenchymal stem cells presented high osteogenic potentials, which modulate osteoblast function through releasing extracellular vesicles (EVs) containing miRNAs. Herein, this study evaluated the function of bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) delivering miR-497-5p in ossification of the posterior longitudinal ligament (OPLL). MAIN METHODS: The expression level of miR-497-5p was validated in ossified posterior longitudinal ligament (PLL) tissues and BMSC-EVs. The uptake of BMSC-EVs by ligament fibroblasts was observed by immunofluorescence. miR-497-5p was overexpressed or downregulated to assess its role in osteogenic differentiation of ligament fibroblasts. Further, an OPLL rat model was established to substantiate the effect of BMSC-EVs enriched with miR-497-5p on OPLL. KEY FINDINGS: Ossified PLL tissues presented with high miR-497-5p expression. PLL fibroblasts were identified to endocytose BMSC-EVs. BMSC-EVs could upregulate miR-497-5p and shuttle it to ligament fibroblasts to accelerate the osteogenic differentiation. miR-497-5p targeted and inversely regulated RSPO2. Then, RSPO2 overexpression activated Wnt/ß-catenin pathway and repressed the osteogenic differentiation of ligament fibroblasts. In vivo experiments further showed that miR-497-5p-containing BMSC-EVs enhanced OPLL through diminishing RSPO2 and inactivating Wnt/ß-catenin pathway. SIGNIFICANCE: BMSC-EVs could deliver miR-497-5p to ligament fibroblasts and modulate RSPO2-mediated Wnt/ß-catenin pathway, thereby accelerating OPLL.


Asunto(s)
Diferenciación Celular , Vesículas Extracelulares/patología , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/patología , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/patología , Trombospondinas/antagonistas & inhibidores , Animales , Vesículas Extracelulares/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , Ratas , Ratas Wistar , Trombospondinas/genética , Trombospondinas/metabolismo
14.
J Pak Med Assoc ; 70 [Special Issue](9): 98-104, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33177736

RESUMEN

OBJECTIVE: This study aimed to find polymorphic loci associated with OPLL in Mongolian and Han population, the relationship of 9 polymorphic loci in Runx2 and IL-15RA with OPLL were identified in Mongolian and Han populations in Inner Mongolia. METHODS: Gene polymorphism of two candidate genes Runx2 and IL-15RA were detected by sequencing in 99 OPLL patients of Han population and 98 patients of Mongolian people. Controls included 102 healthy Han people and 104 healthy Mongolian people. The result of sequencing of patients were compared with control subjects to screen loci with significant difference. RESULTS: In Han population, results of genotyping showed rs1321075 and rs12333172 in Runx2 and rs2296139 in IL-15RA differed between patients and healthy people (P<0.05); Genotype of rs1321075 and rs16873379 and rs2296139 in IL-15RA have significant difference between patients and controls in Mongolian people (P<0.05); There was no significant difference found in genotype and frequency of other loci (P>0.05). CONCLUSIONS: Polymorphism of rs1321075 and rs2296139 in Runx2 and IL-15RA may be responsible for OPLL in Mongolian and Han population patients. rs12333172 was related to OPLL in Han population and rs16873379 was responsible for OPLL in Mongolian people in Inner Mongolia.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Predisposición Genética a la Enfermedad , Subunidad alfa del Receptor de Interleucina-15/genética , Osificación del Ligamento Longitudinal Posterior/genética , Pueblo Asiatico/genética , China , Frecuencia de los Genes , Genotipo , Humanos , Polimorfismo de Nucleótido Simple
15.
J Orthop Surg Res ; 15(1): 490, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092625

RESUMEN

BACKGROUND: The molecular mechanisms of ossification of the posterior longitudinal ligament (OPLL) remain to be elucidated. The aim of the present study was to investigate the autophagy of spinal ligament fibroblasts derived from patients with OPLL and to examine whether autophagy-associated gene expression was correlated with the expression of osteogenic differentiation genes. METHODS: Expression of autophagy-associated genes was detected in 37 samples from 21 OPLL patients and 16 non-OPLL patients. The correlation of autophagy-associated gene expression and the expression of osteogenic differentiation genes was analyzed by Pearson's correlation. The expression of autophagy-associated genes of ligament fibroblasts was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunofluorescence. The incidence of autophagy was assessed by flow cytometry. After knockdown using small interfering RNA targeting Beclin1, the expression of osteogenic differentiation genes were compared in spinal ligament fibroblasts. RESULTS: In clinical specimens, mRNA expression levels of microtubule-associated protein 1 light chain 3 and Beclin1 were higher in the OPLL group compared with the non-OPLL group. Pearson correlation analysis demonstrated that Beclin1 expression was positively correlated with expression of osteocalcin (OCN) (r = 0.8233, P < 0.001), alkaline phosphatase, biomineralization associated (ALP) (r = 0.7821, P < 0.001), and collagen type 1 (COL 1) (r = 0.6078, P = 0.001). Consistently, the upregulation of autophagy-associated genes in ligament fibroblasts from patients with OPLL were further confirmed by western blotting and immunofluorescence. The incidence of autophagy was also increased in ligament fibroblasts from patients with OPLL. Furthermore, knockdown of Beclin1 led to a decrease in the expression of OCN, ALP, and COL 1 by 63.2% (P < 0.01), 52% (P < 0.01), and 53.2% (P < 0.01) in ligament fibroblasts from patients with OPLL, respectively. CONCLUSIONS: Beclin1-mediated autophagy was involved in the osteogenic differentiation of ligament fibroblasts and promoted the development of OPLL.


Asunto(s)
Autofagia/genética , Beclina-1/genética , Beclina-1/metabolismo , Fibroblastos/fisiología , Ligamentos Longitudinales/citología , Osificación del Ligamento Longitudinal Posterior/etiología , Osificación del Ligamento Longitudinal Posterior/genética , Autofagia/fisiología , Beclina-1/fisiología , Diferenciación Celular/genética , Células Cultivadas , Fibroblastos/metabolismo , Expresión Génica , Humanos , Osteogénesis/genética
16.
Spine (Phila Pa 1976) ; 45(22): E1460-E1468, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32756283

RESUMEN

STUDY DESIGN: Immunohistochemical and real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. OBJECTIVE: The aim of this study was to analyze the expression of five susceptibility genes (RSPO2, HAO1, CCDC91, RHPH9, and STK38L) for human ossification of the posterior longitudinal ligaments (OPLL) identified in a genome-wide association study. SUMMARY OF BACKGROUND DATA: Detailed expression and functional studies for the five susceptibility genes are needed to aid in clarification of the etiology and pathogenesis of OPLL. METHODS: Immunostaining, cell culture, and real-time RT-PCR were performed on ossified ligament samples collected during anterior cervical decompression for symptomatic OPLL (n = 39 patients) and on control non-OPLL samples (n = 8 patients). Immunohistochemical analysis in spinal hyperostotic mice (ttw/ttw) (n = 25) was also performed. The sample sections were stained for RSPO2, HAO1, CCDC91, RHPH9, STK38L, Runx2, Sox9, and CD90. The mRNA expression levels of the five susceptibility genes were also analyzed in cultured human OPLL and non-OPLL cells subjected to cyclic tensile strain. RESULTS: Immunoreactivity for RSPO2 and Sox9 was evident in proliferating chondrocytes in human OPLL tissues and ttw/ttw mice. Application of cyclic tensile strain to cultured human OPLL cells resulted in increases in mRNA levels for RSPO2, HAO1, and CCDC91. However, individual differences in expression in human OPLL-related samples were seen. HAO1-positive cells were detected only in 3- to 6-week-old ttw/ttw mice that did not simultaneously express RSPO2-positive samples. CONCLUSION: Among the five susceptibility genes, RSPO2, HAO1, and CCDC91 might be contributory factors in progression of OPLL. RSPO2 may be involved in endochondral ossification, especially in mixed or continuous type OPLL, HAO1 may be an initiation factor for OPLL that is rarely seen in mature human OPLL samples, and CCDC91 may be associated with progression of ossification caused by mechanical stress. These findings provide important insights into the pathogenesis and therapeutic targets for OPLL. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Vértebras Cervicales/metabolismo , Predisposición Genética a la Enfermedad/genética , Hiperostosis/genética , Hiperostosis/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , Anciano , Animales , Células Cultivadas , Vértebras Cervicales/patología , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Hiperostosis/patología , Ligamentos Longitudinales/metabolismo , Ligamentos Longitudinales/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Osificación del Ligamento Longitudinal Posterior/patología
17.
Theranostics ; 10(17): 7492-7509, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685001

RESUMEN

Objectives: Ossification of the posterior longitudinal ligament (OPLL) presents as the development of heterotopic ossification in the posterior longitudinal ligament of the spine. The etiology of OPLL is genetically linked, as shown by its high prevalence in Asian populations. However, the molecular mechanism of the disease remains obscure. In this study, we explored the function and mechanism of OPLL-specific microRNAs. Methods: The expression levels of the ossification-related OPLL-specific miR-181 family were measured in normal or OPLL ligament tissues. The effect of miR-181a on the ossification of normal or pathogenic ligament cells was tested using real-time polymerase chain reaction (PCR), Western blot, alizarin red staining and alkaline phosphatase (ALP) staining. The candidate targets of miR-181 were screened using a dual luciferase reporter assay and functional analysis. The link between miR-181a and its target PBX1 was investigated using chromatin immunoprecipitation, followed by real-time PCR detection. Histological and immunohistochemical analysis as well as micro-CT scanning were used to evaluate the effects of miR-181 and its antagonist using both tip-toe-walking OPLL mice and in vivo bone formation assays. Results: Using bioinformatic analysis, we found that miR-181a-5p is predicted to play important roles in the development of OPLL. Overexpression of miR-181a-5p significantly increased the expression of ossification-related genes, staining level of alizarin red and ALP activity, while the inhibition of miR-181a-5p by treatment with an antagomir had the opposite effects. Functional analysis identified PBX1 as a direct target of miR-181a-5p, and we determined that PBX1 was responsible for miR-181a-5p's osteogenic phenotype. By chromatin immunoprecipitation assay, we found that miR-181a-5p controls ligament cell ossification by regulating PBX1-mediated modulation of histone methylation and acetylation levels in the promoter region of osteogenesis-related genes. Additionally, using an in vivo model, we confirmed that miR-181a-5p can substantially increase the bone formation ability of posterior ligament cells and cause increased osteophyte formation in the cervical spine of tip-toe-walking mice. Conclusions: Our data unveiled the mechanism by which the miR-181a-5p/PBX1 axis functions in the development of OPLL, and it revealed the therapeutic effects of the miR-181a-5p antagomir in preventing OPLL development both in vivo and in vitro. Our work is the first to demonstrate that microRNA perturbation could modulate the development of OPLL through epigenetic regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Acetilación/efectos de los fármacos , Adulto , Anciano , Animales , Antagomirs/administración & dosificación , Células Cultivadas , Biología Computacional , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Histonas/genética , Humanos , Ligamentos Longitudinales/citología , Ligamentos Longitudinales/diagnóstico por imagen , Ligamentos Longitudinales/patología , Ligamentos Longitudinales/cirugía , Masculino , Ratones , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Osificación del Ligamento Longitudinal Posterior/patología , Osificación del Ligamento Longitudinal Posterior/cirugía , Cultivo Primario de Células , Microtomografía por Rayos X
18.
Medicine (Baltimore) ; 99(21): e20268, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32481304

RESUMEN

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL) refers to an ectopic ossification disease originating from the posterior longitudinal ligament of the spine. Pressing on the spinal cord or nerve roots can cause limb sensory and motor disorders, significantly reducing the patient's quality of life. At present, the pathogenesis of OPLL is still unclear. The purpose of this study is to integrate microRNA (miRNA)-mRNA biological information data to further analyze the important molecules in the pathogenesis of OPLL, so as to provide targets for future OPLL molecular therapy. METHODS: miRNA and mRNA expression profiles of GSE69787 were downloaded from Gene Expression Omnibus database and analyzed by edge R package. Funrich software was used to predict the target genes and transcription factors of de-miRNA. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes (DEGs) were carried out based on CLUEGO plug-in in Cytoscape. Using data collected from a search tool for the retrieval of interacting genes online database, a protein-protein interaction (PPI) network was constructed using Cytoscape. The hub gene selection and module analysis of PPI network were carried out by cytoHubba and molecular complex detection, plug-ins of Cytoscape software respectively. RESULTS: A total of 346 genes, including 247 up-regulated genes and 99 down-regulated genes were selected as DEGs. SP1 was identified as an upstream transcription factor of de-miRNAs. Notably, gene ontology enrichment analysis shows that up- and down-regulated DEGs are mainly involved in BP, such as skeletal structure morphogenesis, skeletal system development, and animal organ morphogenesis. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that only WNT signaling pathway was associated with osteogenic differentiation. Lymphoid enhancer binding factor 1 and wingless-type MMTV integration site family member 2 Wingless-Type MMTV Integration site family member 2 were identified as hub genes, miR-520d-3p, miR-4782-3p, miR-6766-3p, and miR-199b-5p were identified as key miRNAs. In addition, 2 important network modules were obtained from PPI network. CONCLUSIONS: In this study, we established a potential miRNA-mRNA regulatory network associated with OPLL, revealing the key molecular mechanism of OPLL and providing targets for future treatment or prevent its occurrence.


Asunto(s)
Biología Computacional/instrumentación , Factor de Unión 1 al Potenciador Linfoide/genética , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/genética , ARN Mensajero/genética , Proteína wnt2/genética , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica/instrumentación , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , Osificación del Ligamento Longitudinal Posterior/patología , Osificación del Ligamento Longitudinal Posterior/fisiopatología , Osificación del Ligamento Longitudinal Posterior/psicología , Osteogénesis/genética , Mapas de Interacción de Proteínas/genética , Calidad de Vida , Columna Vertebral/patología , Factores de Transcripción/genética , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética
19.
Biochem J ; 477(12): 2249-2261, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32432317

RESUMEN

Aberrant expression of microRNAs (miRNAs) has been associated with spinal ossification of the posterior longitudinal ligament (OPLL). Our initial bioinformatic analysis identified differentially expressed ADORA2A in OPLL and its regulatory miRNAs miR-497 and miR-195. Hence, this study was conducted to clarify the functional relevance of miR-497-195 cluster in OPLL, which may implicate in Adenosine A2A (ADORA2A). PLL tissues were collected from OPLL and non-OPLL patients, followed by quantification of miR-497, miR-195 and ADORA2A expression. The expression of miR-497, miR-195 and/or ADORA2A was altered in posterior longitudinal ligament (PLL) cells, which then were stimulated with cyclic mechanical stress (CMS). We validated that ADORA2A was expressed highly, while miR-497 and miR-195 were down-regulated in PLL tissues of OPLL patients. miR-195 and miR-497 expression in CMS-treated PLL cells was restored by a demethylation reagent 5-aza-2'-deoxycytidine (AZA). Moreover, expression of miR-195 and miR-497 was decreased by promoting promoter CpG island methylation. ADORA2A was verified as the target of miR-195 and miR-497. Overexpression of miR-195 and miR-497 diminished expression of osteogenic factors in PLL cells by inactivating the cAMP/PKA signaling pathway via down-regulation of ADORA2A. Collectively, miR-497-195 cluster augments osteogenic differentiation of PLL cells by inhibiting ADORA2A-dependent cAMP/PKA signaling pathway.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Regulación de la Expresión Génica , MicroARNs/genética , Osificación del Ligamento Longitudinal Posterior/patología , Osteogénesis , Receptor de Adenosina A2A/metabolismo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , Receptor de Adenosina A2A/genética , Transducción de Señal
20.
Mol Med Rep ; 21(1): 191-200, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31939624

RESUMEN

Thoracic ossification of the posterior longitudinal ligament (T­OPLL) is one of the most common factors that causes thoracic spinal stenosis, resulting in intractable myelopathy and radiculopathy. Our previous study reported that the rs201153092 polymorphism present in the collagen 6A1 (COL6A1) gene was a potentially pathogenic locus for the development of T­OPLL. The present study aimed to determine whether the rs201153092 mutation causes abnormal expression of COL6A1 in Han Chinese patients with T­OPLL, and to examine the effects of this mutation on osteogenesis by establishing a model of osteogenic differentiation. COL6A1 gene mutant and wild­type mouse 3T3­E1 embryonic osteoblast models were constructed to induce the differentiation of these cells into osteoblasts. The potential of the mutation site to induce abnormal expression of the COL6A1 gene and osteogenic markers was assessed via reverse transcription­quantitative PCR and western blot analyses. The results demonstrated that the rs201153092A mutation site resulted in significantly increased COL6A1 gene expression levels in the OPLL tissues obtained following clinical surgery. This mutation was shown to play an important role in the development of T­OPLL by regulating the overexpression of the COL6A1 gene and significantly increasing the expression levels of osteogenic markers. The findings of the present study suggested that the rs201153092A mutant variant could increase the expression levels of COL6A1 and consequently play a role in the pathogenesis of T­OPLL.


Asunto(s)
Colágeno Tipo VI/genética , Ligamentos Longitudinales/metabolismo , Osificación del Ligamento Longitudinal Posterior/genética , Osteogénesis/genética , Anciano , Animales , Pueblo Asiatico , Línea Celular , Colágeno Tipo VI/metabolismo , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osificación del Ligamento Longitudinal Posterior/patología , Osteoblastos , Polimorfismo de Nucleótido Simple , Vértebras Torácicas/metabolismo , Vértebras Torácicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...