Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.608
1.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Article En | MEDLINE | ID: mdl-38727027

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Flurbiprofen , Osteoarthritis , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Flurbiprofen/chemistry , Flurbiprofen/administration & dosage , Flurbiprofen/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Lubrication , Drug Liberation , Mice , Male , Anilides
2.
PLoS One ; 19(5): e0302906, 2024.
Article En | MEDLINE | ID: mdl-38718039

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Cartilage, Articular , Chondrocytes , Interleukin-1beta , NF-kappa B , Osteoarthritis , Plant Extracts , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley , Down-Regulation/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Collagen Type II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Fruit/chemistry , Aggrecans/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Cells, Cultured , Male , MAP Kinase Signaling System/drug effects
3.
BMC Oral Health ; 24(1): 540, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720327

OBJECTIVE: To investigate the effect of concentrated growth factor (CGF) combined with sodium hyaluronate (SH) on temporomandibular joint osteoarthritis (TMJOA). METHODS: Sixty patients with TMJOA who were diagnosed by cone-beam computed tomography (CBCT) between March 2020 and March 2023 at the Stomatological Hospital of Xi'an Jiaotong University were randomly divided into a control group (n = 30) and an experimental group (n = 30). The patients in the experimental group were treated with CGF + SH, and those in the control group were treated with SH only. The visual analogue scale (VAS) score indicating pain in the temporomandibular joint (TMJ) area; the Helkimo Clinical Dysfunction Index (Di); and changes in condylar CBCT at the first visit and 2 weeks, 3 months and 6 months after treatment were recorded. The CBCT data of the patients in the experimental and control groups were collected, and the three-dimensional CBCT image sequences were imported into Mimics Medical 19.0 software in DICOM format for condylar reconstruction. RESULTS: The VAS scores at 2 weeks, 3 months and 6 months after treatment were significantly lower in the experimental group than in the control group (P < 0.05), and the pain in the experimental group was significantly relieved. The Di was significantly lower in the experimental group than in the control group (P < 0.05), and the clinical function of the TMJ improved. After treatment, the CBCT score was significantly lower in the experimental group than in the control group (P < 0.05), and the condylar bone cortex was obviously repaired. Observation of the condylar bone cortex by three-dimensional reconstruction showed the same results as those obtained by CBCT. CONCLUSION: CGF combined with SH is effective in the treatment of TMJOA and can improve muscle pain, TMJ pain, Impaired TMJ function, Impaired range of movement, Pain on movement of the mandible and promote bone repair. THE REGISTRATION NUMBER (TRN): ChiCTR2400082712. THE DATE OF REGISTRATION: April 5, 2024.


Cone-Beam Computed Tomography , Hyaluronic Acid , Osteoarthritis , Temporomandibular Joint Disorders , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage , Female , Male , Osteoarthritis/drug therapy , Osteoarthritis/diagnostic imaging , Temporomandibular Joint Disorders/drug therapy , Temporomandibular Joint Disorders/diagnostic imaging , Adult , Middle Aged , Pain Measurement , Intercellular Signaling Peptides and Proteins/therapeutic use , Treatment Outcome
4.
Eur Rev Med Pharmacol Sci ; 28(8): 3227-3240, 2024 Apr.
Article En | MEDLINE | ID: mdl-38708481

OBJECTIVE: This study aimed to evaluate pain control, functioning, and quality of life (QoL) recovery in patients with chronic low back pain (cLBP) or post-traumatic osteoarthritis (OA) pain in the ankle/foot area, treated with tapentadol prolonged release and unresponsive to other treatments. PATIENTS AND METHODS: Two observational retrospective studies were conducted using clinical practice datasets of patients with chronic pain in cLBP and OA foot/ankle at different time points (total follow-up=60-90 days). The studies assessed pain intensity by the Numerical Rating Scale (NRS) pain scale (patients were classified as responder in case of ≥30% pain reduction), QoL by the 5-level EQ-5D (EQ-5D-5L) questionnaire, patient satisfaction by the 7-point Patients' Global Impression of Change (PGIC) scale; cLBP health status by the Roland Morris Disability Questionnaire (RMDQ); foot and ankle functional status by European Foot and Ankle Society (EFAS) score; and treatment-related AEs. RESULTS: For the cLBP setting, 37 patients were enrolled, of which 86.50% were classified as responders (n=32; CI: 75.5% ÷ 97.5%). For the foot/ankle OA pain setting, 21 patients were enrolled. Pain assessment at final follow-up was available only for 11 patients, of which 72.73% (n=8; CI: 39.0% ÷ 94.0%) were classified as responders. Statistically significant improvements were seen in the RMDQ, EQ-5D-5L, and PGIC scores in cLBP. Improvements in the EFAS, EQ-5D-5L, and PGIC scores were seen in OA as well. The incidence of treatment-related adverse reactions was low in both studies. CONCLUSIONS: In the study population, tapentadol prolonged release was effective and well tolerated in treating cLBP and post-traumatic foot/ankle OA chronic pain when used in a multimodal manner. The reduction in pain was accompanied by clinically relevant improvements in patients' functionality and QoL.


Chronic Pain , Quality of Life , Tapentadol , Humans , Tapentadol/administration & dosage , Female , Male , Middle Aged , Retrospective Studies , Chronic Pain/drug therapy , Chronic Pain/diagnosis , Musculoskeletal Pain/drug therapy , Musculoskeletal Pain/diagnosis , Aged , Osteoarthritis/drug therapy , Osteoarthritis/complications , Pain Measurement , Adult , Low Back Pain/drug therapy , Recovery of Function , Pain Management/methods , Treatment Outcome
5.
PLoS One ; 19(5): e0298774, 2024.
Article En | MEDLINE | ID: mdl-38722915

OBJECTIVE: Hand osteoarthritis poses a significant health challenge globally due to its increasing prevalence and the substantial burden on individuals and the society. In current clinical practice, treatment options for hand osteoarthritis encompass a range of approaches, including biological agents, antimetabolic drugs, neuromuscular blockers, anti-inflammatory drugs, hormone medications, pain relievers, new synergistic drugs, and other medications. Despite the diverse array of treatments, determining the optimal regimen remains elusive. This study seeks to conduct a network meta-analysis to assess the effectiveness and safety of various drug intervention measures in the treatment of hand osteoarthritis. The findings aim to provide evidence-based support for the clinical management of hand osteoarthritis. METHODS: We performed a comprehensive search across PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials was conducted until September 15th, 2022, to identify relevant randomized controlled trials. After meticulous screening and data extraction, the Cochrane Handbook's risk of bias assessment tool was applied to evaluate study quality. Data synthesis was carried out using Stata 15.1 software. RESULTS: 21 studies with data for 3965 patients were meta-analyzed, involving 20 distinct Western medicine agents. GCSB-5, a specific herbal complex that mainly regulate pain in hand osteoarthritis, showed the greatest reduction in pain [WMD = -13.00, 95% CI (-26.69, 0.69)]. CRx-102, s specific medication characterized by its significant effect for relieving joint stiffness symptoms, remarkably mitigated stiffness [WMD = -7.50, 95% CI (-8.90, -6.10)]. Chondroitin sulfate displayed the highest incidence of adverse events [RR = 0.26, 95% CI (0.06, 1.22)]. No substantial variation in functional index for hand osteoarthritis score improvement was identified between distinct agents and placebo. CONCLUSIONS: In summary, GCSB-5 and CRx-102 exhibit efficacy in alleviating pain and stiffness in HOA, respectively. However, cautious interpretation of the results is advised. Tailored treatment decisions based on individual contexts are imperative.


Osteoarthritis , Humans , Osteoarthritis/drug therapy , Osteoarthritis/therapy , Network Meta-Analysis , Treatment Outcome , Hand , Randomized Controlled Trials as Topic
6.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724958

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Flavonoids , Macrophages , Metal-Organic Frameworks , Osteoarthritis , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Osteoarthritis/drug therapy , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Male , Rats , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167215, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714267

Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.


Botulinum Toxins, Type A , Chondrocytes , Ferroptosis , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Animals , Botulinum Toxins, Type A/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Rats , Male , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans
8.
J Pharm Biomed Anal ; 245: 116196, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38723559

Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.


Achyranthes , Biomarkers , Energy Metabolism , Fatty Acids, Unsaturated , Gas Chromatography-Mass Spectrometry , Metabolomics , Osteoarthritis , Rats, Sprague-Dawley , Animals , Metabolomics/methods , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Achyranthes/chemistry , Rats , Energy Metabolism/drug effects , Male , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/blood , Biomarkers/blood , Dipsacaceae/chemistry , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732122

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Chondrocytes , Glucosamine , Homeostasis , Kruppel-Like Factor 4 , Reactive Oxygen Species , Silybin , Glucosamine/pharmacology , Glucosamine/metabolism , Humans , Silybin/pharmacology , Glycosylation/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Kruppel-Like Factor 4/metabolism , Cell Line , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cartilage/metabolism , Cartilage/drug effects , Oxidative Stress/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy
10.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38563322

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Dendrimers , Nanoparticles , Osteoarthritis , Humans , Reactive Oxygen Species/metabolism , Osteogenesis , Dendrimers/therapeutic use , Osteoarthritis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Phosphorus/therapeutic use
11.
Chem Biol Drug Des ; 103(4): e14518, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570329

Icariin has shown the potential to treat osteoarthritis (OA), but the specific mechanism still needs further exploration. Therefore, this study attempted to reveal the effect and mechanism of icariin on OA based on in vitro and in vivo experiments. In vivo, a mouse model of OA was established by cutting the anterior cruciate ligament, and 10 mg/kg icariin was given to mice orally. Then, the OA injury and pathological changes of cartilage tissue in mice were identified by OA index and hematoxylin and eosin staining. In vitro, the viability of C28/I2 cells incubated with different concentrations of icariin was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Subsequently, C28/I2 cells induced by IL-1ß were used as the cell model of OA, the expression of Sirtuin (SIRT)-1 in cells was knocked down, and icariin was added for intervention. Next, western blot was used to observe the expression level of sirtuin 1 (SIRT-1)-Nrf2-heme oxygenase 1 (HO-1) signaling pathway-related proteins in cells of each group. Besides, cell viability and apoptosis were detected by MTT and apoptosis assay, and DNA damage was observed by comet assay. In vivo experiments, intragastric administration of icariin could effectively reduce the OA index of mice, improve the pathological changes of cartilage tissue, and obviously activated the SIRT-1-Nrf2-HO-1 signaling pathway. In vitro experiments, icariin did not exhibit toxic effect on C28/I2 cells, but could activate the SIRT-1-Nrf2-HO-1 signaling pathway, improve the viability, reduce the level of apoptosis and relieve the DNA damage in OA cells; however, these effects were inhibited by si- SIRT-1. Icariin can improve the symptoms of OA by activating the SIRT-1-Nrf2-HO-1 signaling pathway.


Chondrocytes , Flavonoids , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Heme Oxygenase-1/metabolism , Signal Transduction , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Apoptosis
12.
Sci Rep ; 14(1): 8101, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582868

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Cartilage, Articular , MicroRNAs , Osteoarthritis , Rats , Male , Animals , Hedgehog Proteins , MicroRNAs/genetics , MicroRNAs/therapeutic use , Rats, Sprague-Dawley , Matrix Metalloproteinase 13/genetics , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Chondrocytes , Injections, Intra-Articular , Inflammation , Disease Models, Animal
13.
Nat Commun ; 15(1): 2817, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561399

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-ß signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.


Osteoarthritis , Humans , Retrospective Studies , Osteoarthritis/diagnosis , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Biomarkers , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Machine Learning , Calcium-Binding Proteins
14.
Molecules ; 29(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38611766

Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.


Osteoarthritis , Humans , Osteoarthritis/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Apoptosis , Anti-Inflammatory Agents, Non-Steroidal , Biological Availability
15.
Nutrients ; 16(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38613068

Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.


Erigeron , Osteoarthritis , Animals , Mice , Rats , Research Design , Anti-Inflammatory Agents, Non-Steroidal , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Pain/drug therapy , Plant Extracts/pharmacology
16.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 338-344, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38595255

OBJECTIVE: To observe the clinical effect of arthrocentesis combined with liquid phase concentrated growth factor (CGF) injection in the treatment of unilateral temporomandibular joint osteoarthritis (TMJOA), in order to provide a new treatment option for TMJOA patients. METHODS: In this non-randomized controlled study, patients diagnosed with unilateral TMJOA who visited the center for temporomandibular joint disorder and orofacial pain of Peking University School and Hospital of Stomatology from June 2021 to January 2023 were selected as research objects. The patients were divided into experimental group and control group, which were selected by patients themselves. The experimental group received arthrocentesis combined with liquid phase CGF injection and the control group received arthrocentesis combined with HA injection. Both groups were treated 3 times, once every two weeks. The clinical effect was evaluated by the maximum mouth opening, pain value and the degree of mandibular function limitation 6 months after treatment. The change of condylar bone was evaluated by cone beam CT (CBCT) image fusion technology before and after treatment. RESULTS: A total of 20 patients were included in the experimental group, including 3 males and 17 females, with an average age of (34.40±8.41) years. A total of 15 patients were included in the control group, including 1 male and 14 females, with an average age of (32.20±12.00) years. There was no statistical difference in general information between the two groups (P > 0.05). There were no statistical differences in the mouth opening, pain value and the degree of jaw function limitation between the two groups before treatment (P > 0.05), and all of them improved 6 months after treatment compared with before treatment (P < 0.05). However, the mouth opening of experimental group was significantly higher than that of control group 6 months after treatment (P < 0.05), and the degree of jaw function limitation was significantly lower than that of control group (P < 0.05). CBCT 2D images showed that the condylar bone of both groups was smoother after treatment than before treatment, and image fusion results showed that 10 patients (50.0%) in the experimental group and 5 patients (33.3%) in the control group had reparative remodeling area of condylar bone, and there was no statistical difference between them (P > 0.05). Except for one CGF patient, the other patients in both groups had some absorption areas of condylar bone. CONCLUSION: The arthrocentesis combined with liquid phase CGF injection can improve the clinical symptoms and signs of unilateral TMJOA patients in short term, and is better than HA in increasing mouth opening and improving jaw function. CBCT fusion images of both patient groups show some cases of condylar bone reparative remodeling and its relevance to treatment plans still requires further study.


Arthrocentesis , Osteoarthritis , Female , Humans , Male , Adult , Young Adult , Temporomandibular Joint , Osteoarthritis/drug therapy , Pain/drug therapy , Intercellular Signaling Peptides and Proteins , Treatment Outcome , Injections, Intra-Articular , Hyaluronic Acid/therapeutic use
17.
Curr Med Sci ; 44(2): 355-368, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570439

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disorder characterized by the gradual degradation of joint cartilage and local inflammation. This study aimed to investigate the anti-OA effect of scutellarein (SCU), a single-unit flavonoid compound obtained from Scutellaria barbata D. Don, in rats. METHODS: The extracted rat chondrocytes were treated with SCU and IL-1ß. The chondrocytes were divided into control group, IL-1ß group, IL-1ß+SCU 50 µmol/L group, and IL-1ß+SCU 100 µmol/L group. Morphology of rat chondrocytes was observed by toluidine blue and safranin O staining. CCK-8 method was used to detect the cytotoxicity of SCU. ELISA, qRT-PCR, Western blotting, immunofluorescence, SAß-gal staining, flow cytometry, and bioinformatics analysis were applied to evaluate the effect of SCU on rat chondrocytes under IL-1ß intervention. Additionally, anterior cruciate ligament transection (ACL-T) was used to establish a rat OA model. Histological changes were detected by safranin O/fast green, hematoxylin-eosin (HE) staining, and immunohistochemistry. RESULTS: SCU protected cartilage and exhibited anti-inflammatory effects via multiple mechanisms. Specifically, it could enhance the synthesis of extracellular matrix in cartilage cells and inhibit its degradation. In addition, SCU partially inhibited the nuclear factor kappa-B/mitogen-activated protein kinase (NF-κB/MAPK) pathway, thereby reducing inflammatory cytokine production in the joint cartilage. Furthermore, SCU significantly reduced IL-1ß-induced apoptosis and senescence in rat chondrocytes, further highlighting its potential role in OA treatment. In vivo experiments revealed that SCU (at a dose of 50 mg/kg) administered for 2 months could significantly delay the progression of cartilage damage, which was reflected in a lower Osteoarthritis Research Society International (OARSI) score, and reduced expression of matrix metalloproteinase 13 (MMP13) in cartilage. CONCLUSION: SCU is effective in the therapeutic management of OA and could serve as a potential candidate for future clinical drug therapy for OA.


Apigenin , Chondrocytes , Osteoarthritis , Rats , Animals , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Inflammation/pathology , Cartilage
18.
Biochem Biophys Res Commun ; 710: 149885, 2024 May 28.
Article En | MEDLINE | ID: mdl-38588612

Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1ß-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1ß-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).


Benzene Derivatives , Organoselenium Compounds , Osteoarthritis , Mice , Animals , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Chondrocytes/metabolism , Interleukin-1beta/metabolism
19.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673854

Inflammation is crucial to osteoarthritis (OA) pathogenesis. The aim of this study was to evaluate Siraitia grosvenorii residue extract (NHGRE) obtained by extracting S. grosvenorii fruits with water as a potential food supplement for treating arthritis based on its analgesic, anti-inflammatory, and chondroprotective effects and the remaining residue with 70% ethanol. We observed the analgesic activity of NHGRE based on the acetic acid-induced writhing response in mice, examined its anti-inflammatory efficacy against carrageenan-induced paw oedema in mice, and investigated its effect on inflammatory cytokine expression in interleukin (IL)-1ß-induced SW1353 cells. Furthermore, we determined its effects on cartilage protection in interleukin-1ß (IL-1ß)-treated SW1353 cells. NHGRE at 200 mg/kg significantly reduced the acetic acid-induced writhing response and prevented oedema formation in the carrageenan-induced paw oedema model. In IL-1ß-induced SW1353 cells, NHGRE at 400 µg/mL reduced the expression of inflammation mediators such as tumour necrosis factor (TNF)-α (55.3%), IL-6 (35.4%), and prostaglandin E2 (PGE2) (36.9%) and down-regulated the expression of matrix metalloproteinase (MMP)-1 (38.6%), MMP-3 (29.3%), and MMP-13 (44.8%). Additionally, it restored degraded collagen II levels in chondrocytes. NHGRE plays a protective role in chondrocytes by regulating Nuclear factor kappa B (NF-κB) activation. Overall, NHGRE may be a useful therapeutic agent for OA by controlling pain, oedema formation, and inflammation-related mechanisms.


Analgesics , Anti-Inflammatory Agents , Edema , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Analgesics/pharmacology , Analgesics/therapeutic use , Edema/drug therapy , Edema/chemically induced , Male , Humans , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Carrageenan/adverse effects , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Cytokines/metabolism
20.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38570055

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Cartilage, Articular , Emodin , Osteoporosis , Rats, Sprague-Dawley , X-Ray Microtomography , Animals , Emodin/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Rats , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Female , Disease Models, Animal , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology
...