Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.856
1.
Drug Des Devel Ther ; 18: 1515-1528, 2024.
Article En | MEDLINE | ID: mdl-38716369

Purpose: Estrogen deficiency is the main reason of postmenopausal osteoporosis. Eldecalcitol (ED-71) is a new active vitamin D analogue clinically used in the treatment of postmenopausal osteoporosis. We aimed to investigate whether EphrinB2-EphB4 and RANKL/RANK/OPG signaling cooperate in mediating the process of osteoporosis by ED-71. Methods: In vivo, the ovariectomized (OVX) rats were administered orally with 30 ng/kg ED-71 once a day for 8 weeks. HE staining, Masson staining and Immunofluorescence staining were used to evaluate bone mass, bone formation, osteoclastogenesis associated factors and the expression of EphrinB2, EphB4, RANKL and OPG. In vitro, H2O2 stimulation was used to simulate the cell environment in osteoporosis. Immunofluorescence, quantitative real time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western Blot were applied to detect the expression of EphrinB2, EphB4, RANKL and OPG. In osteoblasts, EphB4 was knocked down by EphB4 small-interfering RNA (siRNA) transfection. LY294002 (PI3K inhibitor) or ARQ092 (AKT inhibitor) was used to block PI3K/AKT pathway. An indirect co-culture system of osteoblasts and osteoclasts was established. The mRNA and protein expression of osteoclastogenes is associated factors were tested by qRT-PCR and Western Blot. Results: ED-71 increased bone mass and decreased the number of osteoclasts in OVX rats. Moreover, ED-71 promoted the expression of EphrinB2, EphB4, and decreased the RANKL/OPG ratio in osteoblasts. Osteoclastogenesis was restrained when osteoclasts were indirectly co-cultured with ED-71-treated osteoblasts. After silencing of EphB4 expression in osteoblasts, ED-71 inhibited the expression of P-PI3K and P-AKT and increased the ratio of RANKL/OPG. This reversed the inhibitory effect of ED-71 on osteoclastogenes. Therefore, in ED-71-inhibited osteoclastogenes, EphB4 is a key factor affecting the secretion of RANKL and OPG by osteoblasts. EphB4 suppressed the RANKL/OPG ratio through activating PI3K/AKT signaling in osteoblasts. Conclusion: ED-71 inhibits osteoclastogenesis through EphrinB2-EphB4-RANKL/OPG axis, improving bone mass in ovariectomized rats. PI3K/AKT pathway is involved this process.


Ephrin-B2 , Osteoprotegerin , Ovariectomy , RANK Ligand , Rats, Sprague-Dawley , Receptor, EphB4 , Animals , Rats , RANK Ligand/metabolism , RANK Ligand/antagonists & inhibitors , Female , Receptor, EphB4/metabolism , Receptor, EphB4/antagonists & inhibitors , Ephrin-B2/metabolism , Ephrin-B2/antagonists & inhibitors , Osteoprotegerin/metabolism , Vitamin D/pharmacology , Vitamin D/analogs & derivatives , Osteogenesis/drug effects , Cells, Cultured , Osteoclasts/drug effects , Osteoclasts/metabolism , Signal Transduction/drug effects , Bone Density/drug effects
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732143

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Disease Models, Animal , Extracorporeal Shockwave Therapy , Muscle Contraction , TRPV Cation Channels , Urinary Bladder , Animals , Female , Rats , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Extracorporeal Shockwave Therapy/methods , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder, Overactive/therapy , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/physiopathology , Urinary Bladder, Overactive/etiology , Ovariectomy , Rats, Sprague-Dawley , Ovary/metabolism
3.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702443

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Ovariectomy/adverse effects , Wnt Signaling Pathway/drug effects , Female , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Density/drug effects , Rats , Rats, Sprague-Dawley , Egg Yolk/chemistry , Egg Yolk/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Egg Proteins/pharmacology , Egg Proteins/metabolism , Peptides/pharmacology , beta Catenin/metabolism , Alkaline Phosphatase/metabolism , Femur/drug effects , Femur/metabolism , X-Ray Microtomography
4.
Biochem Biophys Res Commun ; 716: 150026, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38701557

BACKGROUND: Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS: Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS: G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION: Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.


Diet, High-Fat , Insulin Resistance , Mice, Inbred C57BL , Ovariectomy , Receptors, G-Protein-Coupled , Animals , Female , Diet, High-Fat/adverse effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Mice , Glucose Transporter Type 4/metabolism , Receptors, Estrogen/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Insulin/metabolism , Insulin/blood
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733774

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
6.
Aging (Albany NY) ; 16(9): 7553-7577, 2024 May 13.
Article En | MEDLINE | ID: mdl-38742935

After menopause, the incidence of cardiovascular disease rapidly rises in women. The disappearing protection provided by sex steroids is a consequence of the development of many risk factors. Preclinical studies are necessary to understand better the effects of ovarian hormones loss cardiac aging. To mimic menopause in mice and study its consequences, we delayed ovariectomy at 12 months and followed animals for 12 months. Using RNA sequencing, we investigated changes in the myocardial exome with aging. In addition, with four-core genotypes (FCG) transgenic mice, we studied sex chromosome effects on cardiac aging. Heart weight increased from 3 to 24 months (males + 35%, females + 29%). In males, 75% of this increase had occurred at 12 months; in females, only 30%. Gonadectomy of mice at 12 months blocked cardiac hypertrophy in both sexes during the second year of life. The dosage of the X chromosomes did not influence cardiac growth in young and older mice. We performed an RNA sequencing study in young and old mice. We identified new highly expressed genes modulated during aging (Bdh, Myot, Cpxm2, and Slc38a1). The myocardial exome in older animals displayed few differences related to the animal's sex or the presence or absence of sex steroids for a year. We show that the morphological evolution of the heart depends on the biological sex via gonadal sex hormone actions. The myocardial exome of old male and female mice is relatively similar. Our study emphasizes the need to consider sex steroid effects in studying cardiac aging.


Aging , Gonadal Steroid Hormones , Sex Chromosomes , Animals , Female , Male , Aging/genetics , Mice , Gonadal Steroid Hormones/metabolism , Sex Chromosomes/genetics , Mice, Transgenic , Ovariectomy , Heart , Myocardium/metabolism , Myocardium/pathology , Sex Factors , Cardiomegaly/genetics
7.
Aging (Albany NY) ; 16(9): 7870-7888, 2024 May 03.
Article En | MEDLINE | ID: mdl-38709288

BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of ß-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of ß-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/ß-catenin signalling via down-regulating Sirt5 to increase the malonylation level of ß-catenin partly.


Down-Regulation , Growth Differentiation Factor 2 , Leptin , Osteogenesis , Sirtuins , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Sirtuins/metabolism , Sirtuins/genetics , Female , Rats , Osteogenesis/drug effects , Leptin/metabolism , Leptin/pharmacology , Growth Differentiation Factor 2/metabolism , Wnt Signaling Pathway/drug effects , Ovariectomy , Cell Differentiation/drug effects , Rats, Sprague-Dawley
8.
Int J Pharm Compd ; 28(3): 260-263, 2024.
Article En | MEDLINE | ID: mdl-38768506

Pyometra is a common disease in intact female canines characterized by an infection of the uterus. If it is not treated immediately, it could result in various complications such as fistulous tract development, sepsis, hemorrhage, uveitis, conjunctivitis, pyelonephritis, urinary tract infection, and myocarditis. In this case report, we highlight the benefits of the application of a topical ointment on wound healing after ovariohysterectomy in canine Pyometra. Following surgical intervention, the dog developed necrosis in her nipples and lost a portion of her mammary tissues. A large cyst formed and later ruptured, leaving the animal with a large wound. The vet applied a topical ointment, AlpaWash, to the affected area and prescribed antibiotic, analgesic, and antiinflammatory drugs to help manage the condition. The vet reported complete healing of the wounds within one month from the commencement of the treatment regimen.


Pyometra , Wound Healing , Animals , Female , Dogs , Pyometra/veterinary , Pyometra/drug therapy , Wound Healing/drug effects , Hysterectomy/veterinary , Dog Diseases/drug therapy , Ovariectomy/veterinary , Ointments , Surgical Wound/drug therapy , Surgical Wound/veterinary
9.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Article En | MEDLINE | ID: mdl-38742194

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Alzheimer Disease , Apolipoprotein E3 , Apolipoprotein E4 , Estradiol , Mice, Transgenic , Ovariectomy , Animals , Estradiol/pharmacology , Female , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Behavior, Animal/drug effects , Amyloid beta-Peptides/metabolism , Disease Models, Animal
10.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38704651

BACKGROUND: Alcohol-associated liver disease is a complex disease regulated by genetic and environmental factors such as diet and sex. The combination of high-fat diet and alcohol consumption has synergistic effects on liver disease progression. Female sex hormones are known to protect females from liver disease induced by high-fat diet. In contrast, they promote alcohol-mediated liver injury. We aimed to define the role of female sex hormones on liver disease induced by a combination of high-fat diet and alcohol. METHODS: Wild-type and protein arginine methyltransferase (Prmt)6 knockout female mice were subjected to gonadectomy (ovariectomy, OVX) or sham surgeries and then fed western diet and alcohol in the drinking water. RESULTS: We found that female sex hormones protected mice from western diet/alcohol-induced weight gain, liver steatosis, injury, and fibrosis. Our data suggest that these changes are, in part, mediated by estrogen-mediated induction of arginine methyltransferase PRMT6. Liver proteome changes induced by OVX strongly correlated with changes induced by Prmt6 knockout. Using Prmt6 knockout mice, we confirmed that OVX-mediated weight gain, steatosis, and injury are PRMT6 dependent, while OVX-induced liver fibrosis is PRMT6 independent. Proteomic and gene expression analyses revealed that estrogen signaling suppressed the expression of several components of the integrin pathway, thus reducing integrin-mediated proinflammatory (Tnf, Il6) and profibrotic (Tgfb1, Col1a1) gene expression independent of PRMT6 levels. Integrin signaling inhibition using Arg-Gly-Asp peptides reduced proinflammatory and profibrotic gene expression in mice, suggesting that integrin suppression by estrogen is protective against fibrosis development. CONCLUSIONS: Taken together, estrogen signaling protects mice from liver disease induced by a combination of alcohol and high-fat diet through upregulation of Prmt6 and suppression of integrin signaling.


Estradiol , Integrins , Mice, Knockout , Protein-Arginine N-Methyltransferases , Signal Transduction , Animals , Mice , Female , Signal Transduction/drug effects , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Integrins/metabolism , Diet, High-Fat/adverse effects , Ovariectomy , Ethanol/adverse effects , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/prevention & control , Liver Cirrhosis, Alcoholic/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Disease Models, Animal
12.
Bioorg Chem ; 147: 107364, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636434

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Bone Resorption , Osteogenesis , Ovariectomy , PPAR delta , Signal Transduction , Animals , Mice , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/metabolism , Rats , PPAR delta/metabolism , Female , Osteogenesis/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Molecular Structure , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Dose-Response Relationship, Drug , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Rats, Sprague-Dawley , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects
13.
J Neuroimmune Pharmacol ; 19(1): 16, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652402

Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.


Disease Models, Animal , Neuroinflammatory Diseases , Pain Threshold , Rhinitis, Allergic , Seizures , Sex Characteristics , Animals , Female , Mice , Male , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/psychology , Pain Threshold/physiology , Neuroinflammatory Diseases/metabolism , Seizures/metabolism , Behavior, Animal/physiology , Ovariectomy , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
14.
Acta Cir Bras ; 39: e391024, 2024.
Article En | MEDLINE | ID: mdl-38656061

PURPOSE: Osteoporosis is a bone disease which commonly occurred in postmenopausal women. Almost 10 percent of world population and approximately 30% of women (postmenopausal) suffer from this disease. Alternative medicine has great success in the treatment of osteoporosis disease. Bryodulcosigenin, a potent phytoconstituent, already displayed the anti-inflammatory and antioxidant effect. In this study, we made effort to analyze the antiosteoporosis effect of bryodulcosigenin against ovariectomy (OVX) induced osteoporosis in rats. METHODS: Swiss albino Wistar rats were grouped into fIve groups and given an oral dose of bryodulcosigenin (10, 20 and 30 mg/kg) for eight weeks. Body weight, uterus, bone mineral density, cytokines, hormones parameters, transforming growth factor (TGF)-ß, insulin-like growth factor (IGF), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), and its ratio were estimated. RESULTS: Bryodulcosigenin significantly (p < 0.001) suppressed the body weight and enhanced the uterine weight and significantly (p < 0.001) increased the bone mineral density in whole femur, caput femoris, distal femur and proximal femur. Bryodulcosigenin significantly (P < 0.001) altered the level of biochemical parameters at dose dependent manner, significantly (P < 0.001) improved the level of estrogen and suppressed the level of follicle stimulating hormone and luteinizing hormone. Bryodulcosigenin significantly (P < 0.001) improved the level of OPG and suppressed the level of RANKL. CONCLUSIONS: Bryodulcosigenin reduced the cytokines level and suppressed the TGF-ß and IGF. We concluded that bryodulcosigenin is an antiosteoporosis medication based on the findings.


Bone Density , Osteoporosis , Ovariectomy , Rats, Wistar , Animals , Female , Bone Density/drug effects , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/etiology , Rats , Body Weight/drug effects , Disease Models, Animal , Uterus/drug effects , Cytokines/blood , Cytokines/drug effects , Femur/drug effects , Treatment Outcome
15.
J Biomater Appl ; 38(10): 1073-1086, 2024 May.
Article En | MEDLINE | ID: mdl-38569649

Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, ß-tricalcium phosphate (ß-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of ß-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.


Calcium Phosphates , Osteogenesis , Rats, Sprague-Dawley , Animals , Osteogenesis/drug effects , Female , Mice , Calcium Phosphates/chemistry , Rats , Ovariectomy , Cell Line , Osteoporosis/drug therapy , Bone Regeneration/drug effects , Femur/drug effects , Femur/metabolism
16.
Biochem Biophys Res Commun ; 711: 149858, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38621345

Systemic transplantation of mesenchymal stem cells (MSCs) and conditioned medium derived from MSCs have been reported to recover bone loss in animal models of osteoporosis; however, the underlying mechanisms remain unclear. We recently reported that extracellular vesicles released from human mesenchymal stem cells (hMSCs) prevent senescence of stem cells in bisphosphonate-related osteonecrosis of the jaw model. In this study, we aimed to compare the effects of conditioned medium (hMSCs-CM) from early and late passage hMSCs on cellular senescence and to verify the benefits of CM from early passage hMSCs in mitigating the progression of osteoporosis through the prevention of cellular senescence. We investigated the distinct endocrine effects of early (P5) and late (P17) passage hMSCs in vitro, as well as the preventive benefits of early passage hMSCs-CM in osteoporosis model triggered by ovariectomy. Our results indicate that long-term cultured hMSCs contributed to the progression of inflammatory transcriptional programs in P5 hMSCs, ultimately impairing their functionality and enhancing senescence-related characteristics. Conversely, early passage hMSCs reversed these alterations. Moreover, early passage hMSCs-CM infused intravenously in a postmenopausal osteoporosis mouse model suppressed bone degeneration and prevented osteoporosis by reducing ovariectomy-induced senescence in bone marrow MSCs and reducing the expression of senescence-associated secretory phenotype-related cytokines. Our findings highlight the high translational value of early passage hMSCs-CM in antiaging intervention and osteoporosis prevention.


Cellular Senescence , Mesenchymal Stem Cells , Osteoporosis , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Animals , Culture Media, Conditioned/pharmacology , Osteoporosis/pathology , Osteoporosis/metabolism , Female , Mice , Cells, Cultured , Mice, Inbred C57BL , Disease Models, Animal , Ovariectomy
17.
Open Vet J ; 14(3): 930-936, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682128

Background: Diagnosing ovarian tumors in dogs can be challenging since the clinical symptoms are often generic. The present case report underscores a rare case in which a suspected unilateral ovarian tumor in a dog was initially identified using ultrasonography and subsequently confirmed to be a luteoma through postoperative histopathology. Case Description: An 8-year and 6-month-old female Maltese dog presented with a 10-day history of vulvovaginal bleeding, hematuria, and decreased appetite. Physical examination revealed only vaginal bleeding, with no other abnormalities. Laboratory examinations showed no abnormalities, while abdominal radiography revealed the presence of cystic calculi as the sole abnormality. Abdominal ultrasound revealed an enlarged right ovary with regular contour and echogenicity, featuring unusual cystic components surrounding the right ovarian parenchyma. Furthermore, irregular thickening with multiple cystic lesions was observed in the endometrial wall of the bilateral uterine horns, indicative of cystic endometrial hyperplasia. Ultrasonographic findings suggested unilateral right ovarian disease. During ovariohysterectomy, the right ovary was slightly larger than the left ovary and adhered to the surrounding mesenteric fat layer and right pancreatic parenchyma. Histopathological examination confirmed the diagnosis of luteoma in the right ovary. Three days after surgery, the patient's clinical signs exhibited complete improvement, with the return of normal appetite. Conclusion: This case report highlights a rare diagnosis of unilateral ovarian luteoma based on mild ultrasonographic abnormalities, which was ultimately confirmed on histopathological examination.


Dog Diseases , Luteoma , Ovarian Neoplasms , Ultrasonography , Female , Animals , Dogs , Dog Diseases/diagnostic imaging , Dog Diseases/diagnosis , Dog Diseases/pathology , Dog Diseases/surgery , Ovarian Neoplasms/veterinary , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Ovarian Neoplasms/surgery , Ultrasonography/veterinary , Luteoma/veterinary , Luteoma/diagnostic imaging , Luteoma/pathology , Ovariectomy/veterinary
18.
Int Immunopharmacol ; 132: 112027, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603860

BACKGROUND AND PURPOSE: Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS: We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS: Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS: Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.


Fatty Acids, Volatile , Gastrointestinal Microbiome , Molecular Docking Simulation , Osteoporosis , Ovariectomy , Animals , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Female , Mice , Osteoporosis/drug therapy , Osteoporosis/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Saponins/pharmacology , Saponins/therapeutic use , Humans , Cytokines/metabolism , Network Pharmacology , Inflammation/drug therapy
19.
J Med Chem ; 67(9): 7585-7602, 2024 May 09.
Article En | MEDLINE | ID: mdl-38630440

An efficient protocol for the synthesis of ß-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.


Drug Design , Osteoclasts , Osteoporosis , RANK Ligand , Animals , Mice , Osteoporosis/drug therapy , RANK Ligand/metabolism , RANK Ligand/antagonists & inhibitors , Female , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Differentiation/drug effects , Ovariectomy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Structure-Activity Relationship , Osteogenesis/drug effects , Bone Resorption/drug therapy , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Mice, Inbred C57BL
20.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650149

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
...