Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.801
Filtrar
1.
Methods Enzymol ; 703: 263-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260999

RESUMEN

Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.


Asunto(s)
Oxidación-Reducción , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Desmetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
2.
Methods Enzymol ; 703: 65-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261004

RESUMEN

Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.


Asunto(s)
Oxidación-Reducción , Oxigenasas , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Rhodococcus/enzimología , Rhodococcus/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química
3.
Methods Enzymol ; 703: 299-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261001

RESUMEN

The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.


Asunto(s)
Estabilidad de Enzimas , Oxigenasas/química , Oxigenasas/metabolismo , Oxigenasas/genética , Dicroismo Circular/métodos , Temperatura , Cromatografía Líquida de Alta Presión/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrofotometría Ultravioleta/métodos
4.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2444-2456, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174464

RESUMEN

Indigo, as a water-soluble non-azo colorant, is widely used in textile, food, pharmaceutical and other industrial fields. Currently, indigo is primarily synthesized by chemical methods, which causes environmental pollution, potential safety hazards, and other issues. Therefore, there is an urgent need to find a safer and greener synthetic method. In this study, a dual-enzyme cascade pathway was constructed with the tryptophan synthase (tryptophanase, EcTnaA) from Escherichia coli and flavin-dependent monooxygenase (flavin-dependent monooxygenase, MaFMO) from Methylophaga aminisulfidivorans to synthesize indigo with L-tryptophan as substrate. A recombinant strain EM-IND01 was obtained. The beneficial mutant MaFMOD197E was obtained by protein engineering of the rate-limiting enzyme MaFMO. MaFMOD197E showed the specific activity and kcat/Km value 2.36 times and 1.34 times higher than that of the wild type, respectively. Furthermore, MaFMOD197E was introduced into the strain EM-IND01 to construct the strain EM-IND02. After the fermentation conditions were optimized, the strain achieved the indigo titer of (1 288.59±7.50) mg/L, the yield of 0.86 mg/mg L-tryptophan, and the productivity of 26.85 mg/(L·h) in a 5 L fermenter. Protein engineering was used to obtain mutants with increased MaFMO activity in this study, which laid a foundation for industrial production of indigo.


Asunto(s)
Escherichia coli , Carmin de Índigo , Triptófano , Carmin de Índigo/metabolismo , Triptófano/metabolismo , Triptófano/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería de Proteínas , Triptofanasa/genética , Triptofanasa/metabolismo , Triptófano Sintasa/metabolismo , Triptófano Sintasa/genética , Fermentación , Oxigenasas/genética , Oxigenasas/metabolismo
5.
Cardiovasc Diabetol ; 23(1): 299, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143579

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS: Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS: Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS: In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Metilaminas , Volumen Sistólico , Función Ventricular Izquierda , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/metabolismo , Metilaminas/metabolismo , Metilaminas/sangre , Masculino , Obesidad/microbiología , Obesidad/fisiopatología , Obesidad/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Hígado/metabolismo , Biomarcadores/sangre , Heces/microbiología , Ratas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Bacterias/metabolismo , Disbiosis
6.
Commun Biol ; 7(1): 1054, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191965

RESUMEN

The kidney is vulnerable to ischemia and reperfusion (I/R) injury that can be fatal after major surgery. Currently, there are no effective treatments for I/R-induced kidney injury. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite linked to many diseases, but its role in I/R-induced kidney injury remains unclear. Here, our clinical data reveals an association between preoperative systemic TMAO levels and postoperative kidney injury in patients after post-cardiopulmonary bypass surgery. By genetic deletion of TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) and dietary supplementation of choline to modulate TMAO levels, we found that TMAO aggravated acute kidney injury through the triggering of endoplasmic reticulum (ER) stress and worsened subsequent renal fibrosis through TGFß/Smad signaling activation. Together, our study underscores the negative role of TMAO in I/R-induced kidney injury and highlights the therapeutic potential through the modulation of TMAO levels by targeting FMO3, thereby mitigating acute kidney injury and preventing subsequent renal fibrosis.


Asunto(s)
Lesión Renal Aguda , Riñón , Metilaminas , Oxigenasas , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Ratones , Masculino , Metilaminas/metabolismo , Riñón/metabolismo , Riñón/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Ratones Noqueados , Ratones Endogámicos C57BL , Humanos , Fibrosis , Transducción de Señal , Estrés del Retículo Endoplásmico , Factor de Crecimiento Transformador beta/metabolismo
7.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39122657

RESUMEN

Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.


Asunto(s)
Dióxido de Carbono , Metano , Interacciones Microbianas , Compuestos Orgánicos Volátiles , Metano/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Dióxido de Carbono/metabolismo , Methylomonas/metabolismo , Methylomonas/genética , Proteómica , Proteoma , Procesos Heterotróficos , Oxigenasas/metabolismo , Oxigenasas/genética
8.
Microb Biotechnol ; 17(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160605

RESUMEN

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Asunto(s)
Metano , Oxidorreductasas , Oxigenasas , Proteínas Recombinantes , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Archaea/enzimología , Archaea/genética , Archaea/metabolismo
9.
Arch Microbiol ; 206(8): 363, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073473

RESUMEN

Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.


Asunto(s)
Agua Subterránea , Metagenoma , Oxigenasas , Filogenia , Microbiología del Suelo , Agua Subterránea/microbiología , Agua Subterránea/química , Oxigenasas/genética , Oxigenasas/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta
10.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030545

RESUMEN

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Asunto(s)
Coffea , Oxigenasas , Filogenia , Estrés Fisiológico , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Coffea/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Genoma de Planta/genética , Café/genética , Regiones Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudio de Asociación del Genoma Completo
11.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891781

RESUMEN

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Asunto(s)
Braquiuros , Hepatopáncreas , beta Caroteno , beta-Caroteno 15,15'-Monooxigenasa , Animales , beta Caroteno/metabolismo , Braquiuros/metabolismo , Braquiuros/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , Hepatopáncreas/metabolismo , Muda/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
12.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927664

RESUMEN

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Respuesta al Choque por Frío/genética , Técnicas de Inactivación de Genes , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Fotosíntesis/genética
13.
Geroscience ; 46(5): 4689-4706, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38787463

RESUMEN

Dietary restriction (DR) and hypoxia (low oxygen) extend lifespan in Caenorhabditis elegans through the induction of a convergent downstream longevity gene, fmo-2. Flavin-containing monooxygenases (FMOs) are highly conserved xenobiotic-metabolizing enzymes with a clear role in promoting longevity in nematodes and a plausible similar role in mammals. This makes them an attractive potential target of small molecule drugs to stimulate the health-promoting effects of longevity pathways. Here, we utilize an fmo-2 fluorescent transcriptional reporter in C. elegans to screen a set of 80 compounds previously shown to improve stress resistance in mouse fibroblasts. Our data show that 19 compounds significantly induce fmo-2, and 10 of the compounds induce fmo-2 more than twofold. Interestingly, 9 of the 10 high fmo-2 inducers also extend lifespan in C. elegans. Two of these drugs, mitochondrial respiration chain complex inhibitors, interact with the hypoxia pathway to induce fmo-2, whereas two dopamine receptor type 2 (DRD2) antagonists interact with the DR pathway to induce fmo-2, indicating that dopamine signaling is involved in DR-mediated fmo-2 induction. Together, our data identify nine drugs that each (1) increase stress resistance in mouse fibroblasts, (2) induce fmo-2 in C. elegans, and (3) extend nematode lifespan, some through known longevity pathways. These results define fmo-2 induction as a viable approach to identifying and understanding mechanisms of putative longevity compounds.


Asunto(s)
Caenorhabditis elegans , Longevidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Ratones , Oxigenasas/metabolismo , Oxigenasas/genética , Restricción Calórica , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Evaluación Preclínica de Medicamentos/métodos
14.
PeerJ ; 12: e17337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784401

RESUMEN

Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Brassica/genética , Brassica/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Oxigenasas/genética , Oxigenasas/metabolismo , Genes de Plantas
15.
Nat Commun ; 15(1): 4226, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762502

RESUMEN

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Asunto(s)
Metano , Óxido Nitroso , Óxido Nitroso/metabolismo , Metano/metabolismo , Concentración de Iones de Hidrógeno , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxígeno/metabolismo , Oxidación-Reducción , Anaerobiosis , Metanol/metabolismo , Hidrógeno/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética
16.
J Agric Food Chem ; 72(21): 12209-12218, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38751167

RESUMEN

One-pot biosynthesis of vanillin from ferulic acid without providing energy and cofactors adds significant value to lignin waste streams. However, naturally evolved carotenoid cleavage oxygenase (CCO) with extreme catalytic conditions greatly limited the above pathway for vanillin bioproduction. Herein, CCO from Thermothelomyces thermophilus (TtCCO) was rationally engineered for achieving high catalytic activity under neutral pH conditions and was further utilized for constructing a one-pot synthesis system of vanillin with Bacillus pumilus ferulic acid decarboxylase. TtCCO with the K192N-V310G-A311T-R404N-D407F-N556A mutation (TtCCOM3) was gradually obtained using substrate access channel engineering, catalytic pocket engineering, and pocket charge engineering. Molecular dynamics simulations revealed that reducing the site-blocking effect in the substrate access channel, enhancing affinity for substrates in the catalytic pocket, and eliminating the pocket's alkaline charge contributed to the high catalytic activity of TtCCOM3 under neutral pH conditions. Finally, the one-pot synthesis of vanillin in our study could achieve a maximum rate of up to 6.89 ± 0.3 mM h-1. Therefore, our study paves the way for a one-pot biosynthetic process of transforming renewable lignin-related aromatics into valuable chemicals.


Asunto(s)
Proteínas Bacterianas , Benzaldehídos , Ácidos Cumáricos , Oxigenasas , Benzaldehídos/metabolismo , Benzaldehídos/química , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/química , Oxigenasas/genética , Oxigenasas/metabolismo , Oxigenasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ingeniería de Proteínas , Biocatálisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Bacillus/enzimología , Bacillus/genética
17.
BMC Genomics ; 25(1): 469, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745121

RESUMEN

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxigenasas , Estrés Fisiológico , Arachis/genética , Arachis/enzimología , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Carotenoides/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Filogenia , Genoma de Planta , Regiones Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Nat Commun ; 15(1): 4399, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782897

RESUMEN

Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.32 s-1, through an optimal reassembly of minimal and modified components of sMMO on catalytically inert and stable apoferritin scaffold. We characterise the molecular characteristics in detail through in silico and experimental analyses and verifications. Notably, in-situ methanol production in a high-cell-density culture of mini-sMMO-expressing recombinant Escherichia coli resulted in higher yield and productivity (~ 3.0 g/L and 0.11 g/L/h, respectively) compared to traditional methanotrophic production.


Asunto(s)
Escherichia coli , Metanol , Oxigenasas , Escherichia coli/genética , Escherichia coli/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Metanol/metabolismo , Metanol/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Oxidación-Reducción
19.
J Biol Chem ; 300(6): 107343, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705395

RESUMEN

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Peso Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Especificidad por Sustrato , Biodegradación Ambiental , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Hidroxilación
20.
Biotechnol Lett ; 46(4): 713-724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733438

RESUMEN

Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.


Asunto(s)
Metano , Methylocystaceae , Oryza , Rizosfera , Microbiología del Suelo , Oryza/microbiología , Methylocystaceae/genética , Methylocystaceae/metabolismo , Methylocystaceae/aislamiento & purificación , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , China , Metanol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA