Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Lipids ; 58(1): 41-56, 2023 01.
Article En | MEDLINE | ID: mdl-36195466

Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 µm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7ß-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.


Oxysterols , Cholesterol , Gas Chromatography-Mass Spectrometry , Liver/metabolism , Oxysterols/chemistry , Oxysterols/metabolism , Solid Phase Extraction , Humans
2.
Biochemistry ; 61(10): 843-855, 2022 05 17.
Article En | MEDLINE | ID: mdl-35523209

Among human cytosolic sulfotransferases, SULT2B1b is highly specific for oxysterols─oxidized cholesterol derivatives, including nuclear-receptor ligands causally linked to skin and neurodegerative diseases, cancer and atherosclerosis. Sulfonation of signaling oxysterols redirects their receptor-binding functions, and controlling these functions is expected to prove valuable in disease prevention and treatment. SULT2B1b is distinct among the human SULT2 isoforms by virtue of its atypically long N-terminus, which extends 15 residues beyond the next longest N-terminus in the family. Here, in silico studies are used to predict that the N-terminal extension forms an allosteric pocket and to identify potential allosteres. One such allostere, quercetin, is used to confirm the existence of the pocket and to demonstrate that allostere binding inhibits turnover. The structure of the pocket is obtained by positioning quercetin on the enzyme, using spin-label-triangulation NMR, followed by NMR distance-constrained molecular dynamics docking. The model is confirmed using a combination of site-directed mutagenesis and initial-rate studies. Stopped-flow ligand-binding studies demonstrate that inhibition is achieved by stabilizing the closed form of the enzyme active-site cap, which encapsulates the nucleotide, slowing its release. Finally, endogenous oxysterols are shown to bind to the site in a highly selective fashion─one of the two immediate biosynthetic precursors of cholesterol (7-dehydrocholesterol) is an inhibitor, while the other (24-dehydrocholesterol) is not. These findings provide insights into the allosteric dialogue in which SULT2B1b participates in in vivo and establishes a template against which to develop isoform-specific inhibitors to control SULT2B1b biology.


Oxysterols , Sulfotransferases , Allosteric Site , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Oxysterols/chemistry , Oxysterols/metabolism , Quercetin/chemistry , Quercetin/metabolism , Sulfotransferases/chemistry , Sulfotransferases/metabolism
3.
J Steroid Biochem Mol Biol ; 217: 106046, 2022 03.
Article En | MEDLINE | ID: mdl-34920079

Oxysterols are a family of over 25 cholesterol metabolites naturally produced by enzymatic or radical oxidation. They are involved in many physiological and pathological pathways. Although their activity has been mainly attributed to the modulation of the Liver X Receptors (LXR), it is currently accepted that oxysterols are quite promiscuous compounds, acting at several targets at the same time. The promiscuity of the oxysterols with the Estrogen Receptor α (ERα) is crucial in several pathologies such as ER+ breast cancer, inflammation and atherosclerosis. Regarding this matter, we have previously reported the synthesis, LXR activity and binding mode of a family of cholestenoic acid analogs with a modified side chain. Here we report the transcriptional activity on the ERα triggered by these compounds and details on the molecular determinants involved in their activities in order to establish structure-activity relationships to shed light over the molecular basis of the promiscuity of these compounds on ER/LXR responses. Our results show that 3ß-hydroxy-5-cholestenoic acid can interact with the ERα receptor in a way similar to 26-hydroxycholesterol and is an agonist of the receptor. Using molecular dynamics simulations, we were able to predict the ERα activity of a set of cholestenoic acid analogs with changes in the flexibility and/or steric requirements of the side chain, some of which exhibited selective activation of ERα or LXR.


Estrogen Receptor alpha , Oxysterols , Cholestenes/chemistry , Estrogen Receptor alpha/genetics , Liver X Receptors/agonists , Oxysterols/chemistry
5.
Cells ; 10(8)2021 08 13.
Article En | MEDLINE | ID: mdl-34440846

Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.


Immune System/metabolism , Oxysterols/metabolism , Humans , Ion Channels/metabolism , Oxysterols/chemistry , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Interleukin-8B/chemistry , Receptors, Interleukin-8B/metabolism , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/metabolism , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/metabolism
6.
Am J Respir Cell Mol Biol ; 65(5): 500-512, 2021 11.
Article En | MEDLINE | ID: mdl-34126877

Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. By using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins as being modified in bronchial epithelial cells. Among them was NLRP2 (NLR family pyrin domain-containing protein 2), which forms an alkynyl-tagged SecoA-protein adduct at lysine residue 1019 (K1019) in the terminal leucine-rich repeat region, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized, and CRISPR-Cas9 knockout (KO) and shRNA knockdown of NLRP2 were used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or an NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced proinflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2-KO cells, suggesting a negative regulatory role. Reconstitution of NLRP2-KO cells with the NLRP2 K1019 mutated to arginine partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared with wild-type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of proinflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.


Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammation/metabolism , Oxysterols/metabolism , Ozone/adverse effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Amino Acid Substitution , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Bronchi/cytology , Epithelial Cells , Gene Expression Regulation/drug effects , Humans , Immunoblotting , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/pathology , Interleukin-8/metabolism , Oxysterols/chemistry
7.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article En | MEDLINE | ID: mdl-33808940

The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 µM and 99% at 15 µM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 µM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.


Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Oxysterols/chemistry , Oxysterols/pharmacology , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Cell Survival/drug effects , Chlorocebus aethiops , Mice , Nucleocapsid Proteins/drug effects , Oxysterols/administration & dosage , Oxysterols/pharmacokinetics , SARS-CoV-2/genetics , Vero Cells , Viral Replication Compartments/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
8.
Cells ; 10(2)2021 02 16.
Article En | MEDLINE | ID: mdl-33669184

Among the myriad of molecules produced by the liver, both bile acids and their precursors, the oxysterols are becoming pivotal bioactive lipids which have been underestimated for a long time. Their actions are ranging from regulation of energy homeostasis (i.e., glucose and lipid metabolism) to inflammation and immunity, thereby opening the avenue to new treatments to tackle metabolic disorders associated with obesity (e.g., type 2 diabetes and hepatic steatosis) and inflammatory diseases. Here, we review the biosynthesis of these endocrine factors including their interconnection with the gut microbiota and their impact on host homeostasis as well as their attractive potential for the development of therapeutic strategies for metabolic disorders.


Bile Acids and Salts/metabolism , Liver/metabolism , Oxysterols/metabolism , Animals , Bile Acids and Salts/biosynthesis , Bile Acids and Salts/chemistry , Energy Metabolism , Homeostasis , Humans , Inflammation/pathology , Oxysterols/chemistry
9.
Free Radic Res ; 55(4): 416-440, 2021 Apr.
Article En | MEDLINE | ID: mdl-33494620

Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.


Oxysterols/metabolism , Proteins/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Animals , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Oxysterols/chemistry , Proteins/chemistry
10.
Food Funct ; 12(2): 771-780, 2021 Jan 21.
Article En | MEDLINE | ID: mdl-33393572

Oxysterols are products of enzymatic and/or chemical cholesterol oxidation. While some of the former possess broad antiviral activities, the latter mostly originate from the deterioration of the nutritional value of foodstuff after exposure to heat, light, radiation and oxygen, raising questions about their potential health risks. We evaluated the presence of selected oxysterols in bovine colostrum and monitored the evolution of their cholesterol ratio throughout an entire industrial-scale milk production chain and after industrially employed storage procedures of milk powders. We report here for the first time the presence of high levels of the enzymatic oxysterol 27-hydroxycholesterol (27OHC) in concentrations of antiviral interest in bovine colostrum (87.04 ng mL-1) that decreased during the first postpartum days (56.35 ng mL-1). Of note, this oxysterol is also observed in milk and milk products and is not negatively affected by industrial processing or storage. We further highlight an exponential increase of the non-enzymatic oxysterols 7ß-hydroxycholesterol (7ßOHC) and 7-ketocholesterol (7KC) in both whole (WMPs) and skimmed milk powders (SMPs) during prolonged storage, confirming their role as reliable biomarkers of cholesterol oxidation over time: after 12 months, 7ßOHC reached in both SMPs and WMPs amounts that have been found to be potentially toxic in vitro (265.46 ng g-1 and 569.83 ng g-1, respectively). Interestingly, industrial processes appeared to affect the generation of 7ßOHC and 7KC differently, depending on the presence of fat in the product: while their ratios increased significantly after skimming and processing of skimmed milk and milk products, this was not observed after processing whole milk and milk cream.


Dairy Products/analysis , Food Handling , Milk/chemistry , Oxysterols/chemistry , Animals , Cattle , Colostrum/chemistry
11.
FEBS J ; 288(12): 3727-3745, 2021 06.
Article En | MEDLINE | ID: mdl-33506652

Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein-coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.


Bile Acids and Salts/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Metabolic Networks and Pathways , Animals , Bile Acids and Salts/chemistry , Cholestenes/chemistry , Cholestenes/metabolism , Cholesterol/chemistry , Hepatocytes/cytology , Humans , Models, Chemical , Molecular Structure , Oxysterols/chemistry , Oxysterols/metabolism
12.
J Mol Biol ; 433(4): 166763, 2021 02 19.
Article En | MEDLINE | ID: mdl-33359098

Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 - the most potent among them - can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.


Energy Metabolism , Host-Pathogen Interactions , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/metabolism , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Enzyme Activation , Host-Pathogen Interactions/immunology , Humans , Immunity , Isoenzymes , Models, Molecular , Oxysterols/chemistry , Oxysterols/metabolism , Recombinant Proteins , Structure-Activity Relationship , Tuberculosis/microbiology
13.
Curr Med Chem ; 28(1): 110-136, 2021.
Article En | MEDLINE | ID: mdl-32175830

The present review aims to provide a complete and comprehensive summary of current literature relevant to oxysterols and related diseases. Oxidation of cholesterol leads to the formation of a large number of oxidized products, generally known as oxysterols. They are intermediates in the biosynthesis of bile acids, steroid hormones, and 1,25- dihydroxyvitamin D3. Although oxysterols are considered as metabolic intermediates, there is a growing body of evidence that many of them are bioactive, and their absence or excess may be part of the cause of a disease phenotype. These compounds derive from either enzymatic or non-enzymatic oxidation of cholesterol. This study provides comprehensive information about the structures, formation, and types of oxysterols even when involved in certain disease states, focusing on their effects on metabolism and linkages with these diseases. The role of specific oxysterols as mediators in various disorders, such as degenerative (age-related) and cancer-related disorders, has now become clearer. Oxysterol levels may be employed as suitable markers for the diagnosis of specific diseases or in predicting the incidence rate of diseases, such as diabetes mellitus, Alzheimer's disease, multiple sclerosis, osteoporosis, lung cancer, breast cancer, and infertility. However, further investigations may be required to confirm these mentioned possibilities.


Disease , Oxysterols/chemistry , Oxysterols/metabolism , Cholesterol , Humans , Oxidation-Reduction
14.
Nat Microbiol ; 5(7): 929-942, 2020 07.
Article En | MEDLINE | ID: mdl-32284563

Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene that converts cholesterol to the oxysterol 25-hydroxycholesterol (25HC). Circulating 25HC modulates essential immunological processes including antiviral immunity, inflammasome activation and antibody class switching; and dysregulation of CH25H may contribute to chronic inflammatory disease and cancer. Although 25HC is a potent regulator of cholesterol storage, uptake, efflux and biosynthesis, how these metabolic activities reprogram the immunological state of target cells remains poorly understood. Here, we used recently designed toxin-based biosensors that discriminate between distinct pools of plasma membrane cholesterol to elucidate how 25HC prevents Listeria monocytogenes from traversing the plasma membrane of infected host cells. The 25HC-mediated activation of acyl-CoA:cholesterol acyltransferase (ACAT) triggered rapid internalization of a biochemically defined fraction of cholesterol, termed 'accessible' cholesterol, from the plasma membrane while having little effect on cholesterol in complexes with sphingomyelin. We show that evolutionarily distinct bacterial species, L. monocytogenes and Shigella flexneri, exploit the accessible pool of cholesterol for infection and that acute mobilization of this pool by oxysterols confers immunity to these pathogens. The significance of this signal-mediated membrane remodelling pathway probably extends beyond host defence systems, as several other biologically active oxysterols also mobilize accessible cholesterol through an ACAT-dependent mechanism.


Bacteria/immunology , Bacterial Infections/immunology , Bacterial Infections/microbiology , Cell Membrane/metabolism , Cholesterol/metabolism , Immunity, Innate/drug effects , Oxysterols/pharmacology , Bacterial Infections/drug therapy , Cholesterol/chemistry , Cytokines/metabolism , Epithelial Cells/microbiology , Humans , Interferons/metabolism , Listeria/drug effects , Listeria/immunology , Models, Molecular , Molecular Conformation , Molecular Structure , Oxysterols/chemistry , Oxysterols/metabolism , Shigella/drug effects , Shigella/immunology , Sterol O-Acyltransferase/metabolism , Structure-Activity Relationship
15.
J Steroid Biochem Mol Biol ; 199: 105585, 2020 05.
Article En | MEDLINE | ID: mdl-31931135

Liver X Receptors (LXRs) are ligand dependent transcription factors activated by oxidized cholesterol metabolites (oxysterols) that play fundamental roles in the transcriptional control of lipid metabolism, cholesterol transport and modulation of inflammatory responses. In the last decade, LXRs have become attractive pharmacological targets for intervention in human metabolic diseases and thus, several efforts have concentrated on the development of synthetic analogues able to modulate LXR transcriptional response. In this sense, we have previously found that cholestenoic acid analogues with a modified side chain behave as LXR inverse agonists. To further investigate the structure-activity relationships and to explore how cholestenoic acid derivatives interact with the LXRs, we evaluated the LXR biological activity of new analogues containing a C24-C25 double bond. Furthermore, a microarray assay was performed to evaluate the recruitment of coregulators to recombinant LXR LBD upon ligand binding. Also, conventional and accelerated molecular dynamics simulations were applied to gain insight on the molecular determinants involved in the inverse agonism. As LXR inverse agonists emerge as very promising candidates to control LXR activity, the cholestenoic acid analogues here depicted constitute a new relevant steroidal scaffold to inhibit LXR action.


Cholestenes/pharmacology , Cholesterol/metabolism , Liver X Receptors/chemistry , Oxysterols/metabolism , Cholestenes/chemistry , Cholesterol/genetics , Gene Expression Regulation/drug effects , Humans , Ligands , Lipid Metabolism , Liver X Receptors/genetics , Liver X Receptors/ultrastructure , Microarray Analysis , Molecular Conformation , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Oxysterols/chemistry , Protein Binding/drug effects , Protein Conformation , Signal Transduction/drug effects , Structure-Activity Relationship
16.
Biochim Biophys Acta Biomembr ; 1862(2): 183067, 2020 02 01.
Article En | MEDLINE | ID: mdl-31634445

In this paper, systematic studies concerning the influence of selected oxysterols on the structure and fluidity of human erythrocyte membrane modeled as Langmuir monolayers have been performed. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH) 7ß-hydroxycholesterol (7ß-OH) and 7-ketocholesterol (7-K) have been incorporated in two different proportions (10 and 50%) into artificial erythrocyte membrane, modeled as two-component (cholesterol:POPC) Langmuir monolayer. All the studied oxysterols were found to alter membrane fluidity and the effect was more pronounced for higher oxysterol content. 7α-OH increased membrane fluidity while opposite effect was observed for 7ß-OH and 7-K. Experiments performed on model systems have been verified in biological studies on red blood cells (RBC). Consistent results have been found, i.e. under the influence of 7α-OH, the elasticity of erythrocytes increased, and in the presence of other investigated oxysterols - decreased. The strongest effect was noticed for 7-K. Change of membrane elasticity was associated with the change of erythrocytes shape, being most noticeable under the influence of 7-K.


Erythrocyte Membrane/drug effects , Erythrocytes/drug effects , Oxysterols/pharmacology , Cell Shape/drug effects , Cells, Cultured , Elasticity/drug effects , Erythrocyte Membrane/chemistry , Humans , Hydroxycholesterols/pharmacology , Ketocholesterols/pharmacology , Membrane Fluidity/drug effects , Membranes, Artificial , Oxysterols/chemistry , Phosphatidylcholines
19.
Nature ; 571(7764): 279-283, 2019 07.
Article En | MEDLINE | ID: mdl-31168089

The oncoprotein Smoothened (SMO), a G-protein-coupled receptor (GPCR) of the Frizzled-class (class-F), transduces the Hedgehog signal from the tumour suppressor Patched-1 (PTCH1) to the glioma-associated-oncogene (GLI) transcription factors, which activates the Hedgehog signalling pathway1,2. It has remained unknown how PTCH1 modulates SMO, how SMO is stimulated to form a complex with heterotrimeric G proteins and whether G-protein coupling contributes to the activation of GLI proteins3. Here we show that 24,25-epoxycholesterol, which we identify as an endogenous ligand of PTCH1, can stimulate Hedgehog signalling in cells and can trigger G-protein signalling via human SMO in vitro. We present a cryo-electron microscopy structure of human SMO bound to 24(S),25-epoxycholesterol and coupled to a heterotrimeric Gi protein. The structure reveals a ligand-binding site for 24(S),25-epoxycholesterol in the 7-transmembrane region, as well as a Gi-coupled activation mechanism of human SMO. Notably, the Gi protein presents a different arrangement from that of class-A GPCR-Gi complexes. Our work provides molecular insights into Hedgehog signal transduction and the activation of a class-F GPCR.


Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Oxysterols/chemistry , Smoothened Receptor/chemistry , Smoothened Receptor/ultrastructure , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hedgehog Proteins/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Ligands , Models, Molecular , Oxysterols/metabolism , Patched-1 Receptor/metabolism , Protein Conformation , Signal Transduction , Smoothened Receptor/metabolism , Veratrum Alkaloids/chemistry
20.
Cells ; 8(5)2019 05 27.
Article En | MEDLINE | ID: mdl-31137846

The widespread involvement of the Hedgehog (Hh) signaling pathway in human malignancies has motivated the clinical development of Smoothened (Smo) antagonists, such as vismodegib and sonidegib. However, Smo antagonists have failed to benefit patients suffering from Hh pathway-dependent solid tumors, such as pancreatic, colorectal, or ovarian cancer. Hh-dependent cancers are often driven by activating mutations that occur downstream of Smo and directly activate the transcription factors known as glioma-associated oncogenes (Gli1-3). Hence, the direct targeting of Gli could be a more effective strategy for achieving disease modification compared to Smo antagonism. In this study, we report on the biological and pharmacological evaluation of Oxy186, a semisynthetic oxysterol analogue, as a novel inhibitor of Hh signaling acting downstream of Smo, with encouraging drug-like properties. Oxy186 exhibits strong inhibition of ligand-induced Hh signaling in NIH3T3-E1 fibroblasts, as well as in constitutively activated Hh signaling in Suppressor of Fused (Sufu) null mouse embryonic fibroblast (MEF) cells. Oxy186 also inhibits Gli1 transcriptional activity in NIH3T3-E1 cells expressing exogenous Gli1 and Gli-dependent reporter constructs. Furthermore, Oxy186 suppresses Hh signaling in PANC-1 cells, a human pancreatic ductal adenocarcinoma (PDAC) tumor cell line, as well as PANC-1 cell proliferation in vitro, and in human lung cancer cell lines, A549 and H2039.


Fibroblasts/metabolism , Hedgehog Proteins/antagonists & inhibitors , Lung Neoplasms/pathology , Oxysterols/chemistry , Pancreatic Neoplasms/pathology , Phenanthrenes/pharmacology , Pregnenolone/analogs & derivatives , Pregnenolone/pharmacology , A549 Cells , Animals , Area Under Curve , Cell Proliferation/drug effects , Half-Life , Hedgehog Proteins/metabolism , Hep G2 Cells , Humans , Liver X Receptors/metabolism , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Phenanthrenes/administration & dosage , Pregnenolone/administration & dosage , Signal Transduction/drug effects , Smoothened Receptor/antagonists & inhibitors , Transcriptional Activation/drug effects , Transfection , Zinc Finger Protein GLI1/genetics
...